MEMORIAL UNIVERSITY OF NEWFOUNDLAND

 DEPARTMENT OF MATHEMATICS AND STATISTICS
Assignment 2

Math 3202
Spring 2019

Due: Friday, May 31st, 2019 at 1:00pm. SHOW ALL WORK.

Note: The following textbook problems are useful practice for the topics covered on this assignment:

- Section 13.2, \#s 3-26, 32-40
- Section 13.3, \#s 1-9, 13-16

1. Given $\mathbf{r}(t)=\left\langle\frac{1}{\sqrt{9-t^{2}}}, \frac{t}{\sqrt{16+t^{2}}}, t \cos (\pi t)\right\rangle$, compute each of the following.
(a) $\mathbf{r}^{\prime}(t)$
(b) $\int \mathbf{r}(t) d t$
(c) $\int_{0}^{3} \mathbf{r}(t) d t$
2. Let $\mathbf{v}(t)=\langle f(t), g(t)\rangle$. Prove that if $z(t)$ is a scalar function then

$$
[z(t) \mathbf{v}(t)]^{\prime}=z^{\prime}(t) \mathbf{v}(t)+z(t) \mathbf{v}^{\prime}(t)
$$

3. Given $\mathbf{r}(t)=\left\langle t^{3}-5 t, t^{2},-4 t\right\rangle$, find each of the following.
(a) $\mathbf{T}(2)$, the unit tangent vector at the point $t=2$
(b) a parametrisation of the tangent line to $\mathbf{r}(t)$ at $t=2$
4. Determine whether each of the following curves is smooth for all real numbers t.
(a) $\mathbf{r}(t)=\left\langle t^{3}-3 t, t^{2}-2 t, t^{4}-2 t^{2}\right\rangle$
(b) $\mathbf{r}(t)=\left\langle t^{3}-3 t, t^{2}+2 t, t^{4}+2 t^{2}\right\rangle$
5. Show that the curves traced out by $\mathbf{r}_{1}(t)=\langle t, 1-2 t, 2 t\rangle$ and $\mathbf{r}_{2}(t)=\left\langle t^{2},-t^{2}, t^{2}+1\right\rangle$ intersect and determine the cosine of the angle of intersection.
6. Find the length of the curve $\mathbf{r}(t)=\left\langle 2 t^{2}+1, \frac{3}{2} t^{2}, t^{3}\right\rangle$ on the interval $0 \leq t \leq 4$.
7. Consider the function $\mathbf{r}(t)=\left\langle e^{t} \cos (t), e^{t} \sin (t), e^{t}\right\rangle$ for $t \geq 0$.
(a) Derive the arclength function $s(t)$.
(b) Reparametrise $\mathbf{r}(t)$ in terms of its arclength.
