MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

Assignment 2	Math 3202	Spring 2019

Due: Friday, May 31st, 2019 at 1:00pm. SHOW ALL WORK.

Note: The following textbook problems are useful practice for the topics covered on this assignment:

- Section 13.2, #s 3–26, 32–40
- Section 13.3, #s 1–9, 13–16

1. Given
$$\mathbf{r}(t) = \left\langle \frac{1}{\sqrt{9-t^2}}, \frac{t}{\sqrt{16+t^2}}, t\cos(\pi t) \right\rangle$$
, compute each of the following.

- (a) r'(t)
- (b) $\int \mathbf{r}(t) dt$ (c) $\int_0^3 \mathbf{r}(t) dt$
- 2. Let $\mathbf{v}(t) = \langle f(t), g(t) \rangle$. Prove that if z(t) is a scalar function then

$$[z(t)\mathbf{v}(t)]' = z'(t)\mathbf{v}(t) + z(t)\mathbf{v}'(t).$$

- 3. Given $\mathbf{r}(t) = \langle t^3 5t, t^2, -4t \rangle$, find each of the following.
 - (a) $\mathbf{T}(2)$, the unit tangent vector at the point t = 2
 - (b) a parametrisation of the tangent line to $\mathbf{r}(t)$ at t = 2
- 4. Determine whether each of the following curves is smooth for all real numbers t.

(a)
$$\mathbf{r}(t) = \langle t^3 - 3t, t^2 - 2t, t^4 - 2t^2 \rangle$$

- (b) $\mathbf{r}(t) = \langle t^3 3t, t^2 + 2t, t^4 + 2t^2 \rangle$
- 5. Show that the curves traced out by $\mathbf{r}_1(t) = \langle t, 1-2t, 2t \rangle$ and $\mathbf{r}_2(t) = \langle t^2, -t^2, t^2+1 \rangle$ intersect and determine the <u>cosine</u> of the angle of intersection.
- 6. Find the length of the curve $\mathbf{r}(t) = \langle 2t^2 + 1, \frac{3}{2}t^2, t^3 \rangle$ on the interval $0 \le t \le 4$.
- 7. Consider the function $\mathbf{r}(t) = \langle e^t \cos(t), e^t \sin(t), e^t \rangle$ for $t \ge 0$.
 - (a) Derive the arclength function s(t).
 - (b) Reparametrise $\mathbf{r}(t)$ in terms of its arclength.