MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

Assignment 1
Math 3202
Spring 2019

Due: Friday, May 24th, 2019 by 1:00pm. SHOW ALL WORK.
Note: The following textbook problems are useful practice for the topics covered on this assignment:

- Section 13.1, \#s 1-14, 17-20, 41, 49, 50

1. Find the domain of the function $\mathbf{r}(t)=\left\langle\arcsin (t), \ln (3 t), \frac{1}{4 t-3}\right\rangle$.
2. Find a vector parametrisation of the line which passes through the points $P(4,-2,5)$ and $Q(1,0,-3)$.
3. Consider the space curve defined by $\mathbf{r}(t)=\left\langle t^{2}, t-4,2 t^{3}\right\rangle$. Determine whether each of the following points lies on the curve.
(a) $P(4,-2,4)$
(b) $Q(1,-5,-2)$
4. The graph of $\mathbf{r}(t)=\langle 1+4 \sin (5 t), 4 \cos (5 t)-7\rangle$ is a circle.
(a) Find the radius and the centre of the circle.
(b) Determine whether the orientation of the curve (that is, the direction traced out by the curve as t increases) is clockwise or counterclockwise.
(c) Identify the part of the curve traced out if the domain is restricted to $0 \leq t \leq \frac{\pi}{5}$.
5. For each of the following vector functions, express the corresponding curve as an equation in (x, y)-coordinates. If possible, classify the graph as a line, parabola, circle, ellipse or hyperbola.
(a) $\mathbf{r}(t)=\langle 3 \cos (t), 4 \cos (t)\rangle$
(b) $\mathbf{r}(t)=\langle 3 \cos (t), 4 \sin (t)\rangle$
(c) $\mathbf{r}(t)=\left\langle 3 \cos (t), 4 \sin ^{2}(t)\right\rangle$
(d) $\mathbf{r}(t)=\langle 3 \sec (t), 4 \tan (t)\rangle$
6. Scientists are observing an asteroid named Glaaki whose trajectory can be modelled by the vector function

$$
\mathbf{r}_{G}(t)=\left\langle t, t^{2}, t^{3}\right\rangle .
$$

The scientists are looking for asteroids that may interact with Glaaki. If two asteroids will occupy the same point in space at the same time, they are classified as colliding. If they will occupy the same point in space at different times, they are classified as intersecting. Otherwise, they are non-interacting.
(a) The scientists identify a second asteroid of interest, named Hastur. Initially they model its trajectory as

$$
\mathbf{r}_{H}(t)=\left\langle 4 t-6,4 t^{2},-8 t^{-1}\right\rangle .
$$

Determine whether Glaaki and Hastur are colliding, intersecting or non-interacting.
(b) Later, new information helps the scientists to more accurately represent Hastur's trajectory as

$$
\mathbf{r}_{H}(t)=\left\langle 2 t-1,2 t^{2}-t, \sqrt{t}\right\rangle
$$

Now determine whether Glaaki and Hastur are colliding, intersecting or non-interacting.
7. Given

$$
\mathbf{r}(t)=\left\langle\frac{1}{e^{t}}, \frac{6 t^{2}}{t-t^{2}}, \cos \left(\frac{\pi}{t+1}\right)\right\rangle,
$$

evaluate each limit or explain why it does not exist.
(a) $\lim _{t \rightarrow 0} \mathbf{r}(t)$
(b) $\lim _{t \rightarrow 1} \mathbf{r}(t)$
(c) $\lim _{t \rightarrow \infty} \mathbf{r}(t)$

