Please remember that each final exam is different, and the style and emphasis of the questions will vary from semester to semester.

[12] 1. A particle moves along the curve $\mathbf{r}(t)=\left\langle 0,10 t, 25 t-5 t^{2}\right\rangle$. Find its velocity $\mathbf{v}(t)$, speed $v(t)$, acceleration $\mathbf{a}(t)$ and curvature $\kappa(t)$.
[6] 2. Find a unit normal vector to the surface $x y z=16$ at the point $P(-2,2,-4)$ and determine the equation of the tangent plane at P.
3. Consider the function $f(x, y, z)=x^{2}-2 y^{2}+3 z^{2}$ at the point $P(2,3,-1)$. Find the maximum rate of change of f at P and the unit vector that points in the direction of maximum increase.
[8] 4. Consider the surface S described parametrically by $\mathbf{R}(u, v)=\langle 3 u \cos (v), 3 u \sin (v), 4 u\rangle$ for $0 \leq u \leq 2$ and $0 \leq v \leq 2 \pi$. Find the surface area of S.
[12] 5. Let E be the solid which lies above the $x y$-plane and between the spheres of radius 1 and 2 both centred at the origin. Evaluate $\iiint_{E} z\left(x^{2}+y^{2}+z^{2}\right) d V$.
[12] 6. Let $\mathbf{F}(x, y, z)=\left\langle x^{2}, \cos (y) \sin (z), \sin (y) \cos (z)\right\rangle$ and C be the curve defined by the function $\mathbf{r}(t)=\left\langle t^{2}+1, e^{t}, e^{2 t}\right\rangle$ for $0 \leq t \leq 2$. Use the Fundamental Theorem of Line Integrals to evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$.
[6] 7. Consider $\mathbf{F}(x, y, z)=\left\langle x z-y^{2}, 2 y z, 3 z\right\rangle$. Calculate $\operatorname{curl}(\mathbf{F})$ and $\operatorname{div}(\mathbf{F})$.
[8] 8. Show that $\operatorname{div}(\operatorname{curl}(\mathbf{F}))=0$ for any vector field \mathbf{F}.
[18] 9. Verify Stokes' Theorem for the vector field $\mathbf{F}=\langle 2 x y, x, y+z\rangle$ and the surface S consisting of the portion of the hyperbolic paraboloid $z=1-x^{2}-y^{2}$ lying above the unit circle $x^{2}+y^{2}=1$.
[12] 10. Let E be the tetrahedron bounded by the planes $x=0, y=0, z=0$ and $x+y+z=1$. For $\mathbf{F}=\langle 2 x, 3 x z,-z\rangle$ use the Divergence Theorem to evaluate $\iint_{\partial E} \mathbf{F} \cdot d \mathbf{S}$.

