MEMORIAL UNIVERSITY OF NEWFOUNDLAND
 DEPARTMENT OF MATHEMATICS AND STATISTICS

WORKSHEET
MATH 2260
Spring 2019

For practice only. Not to be submitted.

1. Consider a function $f(t)$ with Laplace transform $\mathcal{L}\{f(t)\}=F(s)$. Prove that if $k>0$ is a constant then

$$
\mathcal{L}\{f(k t)\}=\frac{1}{k} F\left(\frac{s}{k}\right) .
$$

2. Use known Laplace transforms and the fact that

$$
\cosh (x)=\frac{e^{x}+e^{-x}}{2}
$$

to find the Laplace transform of $\cosh (k t)$, where k is a constant.
3. For each of the following functions $F(s)$, determine a function $f(t)$ such that $\mathcal{L}\{f(t)\}=F(s)$.
(a) $F(s)=\frac{1}{2 s-6}$
(b) $F(s)=\frac{4 s-1}{s^{2}+16}$
(c) $F(s)=\frac{s-3}{s^{2}-2 s+5}$
(d) $F(s)=\frac{2}{s}-\frac{1}{s+2}$
4. Use the Laplace transform to solve each of the following initial value problems.
(a) $\frac{d y}{d t}+3 y=2 e^{-t}, \quad y(0)=1$
(b) $\frac{d y}{d t}-2 y=e^{2 t} \cos (3 t), \quad y(0)=0$
(c) $\frac{d^{2} y}{d t^{2}}-5 \frac{d y}{d t}+4 y=0, \quad y(0)=-2, \quad y^{\prime}(0)=7$
(d) $\frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}+10 y=0, \quad y(0)=0, \quad y^{\prime}(0)=3$
5. Use the Laplace transform to solve each of the following systems of differential equations.
(a) The system

$$
\begin{aligned}
& \frac{d x}{d t}=3 x-2 y \\
& \frac{d y}{d t}=4 x+7 y
\end{aligned}
$$

where $x(0)=3$ and $y(0)=2$.
(b) The system

$$
\begin{aligned}
& \frac{d x}{d t}=x-4 y+e^{t} \\
& \frac{d y}{d t}=x+y
\end{aligned}
$$

where $x(0)=-1, y(0)=0$.
6. Find the Laplace transform of each of the following functions.
(a) $f(t)=u_{2}(t) e^{t}$
(b) $f(t)=\left\{\begin{array}{rr}\cos (3 t-12)+4, & t \geq 4 \\ 4, & t<4\end{array}\right.$
(c) $f(t)= \begin{cases}t, & 1 \leq t<3 \\ 0, & t<1 \quad \text { or } \quad t \geq 3\end{cases}$
7. For each of the following functions $F(s)$, determine a function $f(t)$ such that $\mathcal{L}\{f(t)\}=F(s)$.
(a) $F(s)=\frac{e^{-2 s}}{s-7}$
(b) $F(s)=\frac{e^{-3 s} s}{s^{2}-4 s+29}$
(c) $F(s)=\frac{e^{-2 s}-e^{-5 s}}{s^{2}-2 s+1}$
8. Solve the initial value problem

$$
\frac{d^{2} y}{d t^{2}}+9 y=u_{\pi}(t) \cos (t-\pi), \quad y(0)=0, \quad y^{\prime}(0)=2
$$

