MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

SOLUTIONS

[3] 1. (a) The characteristic equation is

$$
r^{4}+4 r^{3}+13 r^{2}+36 r+36=(r+2)^{2}\left(r^{2}+9\right)=0
$$

which has a double root $r=-2$ and complex conjugate roots $r= \pm 3 i$. Hence the general solution is

$$
y=C_{1} e^{-2 t}+C_{2} t e^{-2 t}+C_{3} \cos (3 t)+C_{4} \sin (3 t) .
$$

[3] (b) The characteristic equation is

$$
4 r^{4}-13 r^{3}+15 r^{2}-7 r+1=(r-1)^{3}(4 r-1)
$$

which has a triple root $r=1$ and a distinct real root $r=\frac{1}{4}$. Hence the general solution is

$$
y=C_{1} e^{t}+C_{2} t e^{t}+C_{3} t^{2} e^{t}+C_{4} e^{\frac{t}{4}}
$$

[4] (c) The characteristic equation is

$$
r^{3}+r^{2}-6 r=0=r(r+3)(r-2)=0
$$

which has three distinct real roots $r=0, r=-3$ and $r=2$. Hence the general solution is

$$
y=C_{1}+C_{2} e^{-3 t}+C_{3} e^{2 t}
$$

Furthermore, this means

$$
\begin{aligned}
\frac{d y}{d t} & =-3 C_{2} e^{-3 t}+2 C_{3} e^{2 t} \\
\frac{d^{2} y}{d t^{2}} & =9 C_{2} e^{-3 t}+4 C_{3} e^{2 t}
\end{aligned}
$$

The initial conditions, then, yield the system of equations

$$
\begin{aligned}
C_{1}+C_{2}+C_{3} & =0 \\
-3 C_{2}+2 C_{3} & =9 \\
9 C_{2}+4 C_{3} & =33 .
\end{aligned}
$$

Solving this, we obtain $C_{1}=-7, C_{2}=1, C_{3}=6$ and so the particular solution of the initial value problem is

$$
y=-7+e^{-3 t}+6 e^{2 t}
$$

[4] 2. (a) The solution of the corresponding homogeneous equation is

$$
y_{c}=C_{1} e^{5 t}+C_{2} e^{3 t}
$$

The appropriate form of the particular solution is

$$
\begin{aligned}
y_{p} & =A \sin (5 t)+B \cos (5 t) \\
\frac{d y_{p}}{d t} & =5 A \cos (5 t)-5 B \sin (5 t) \\
\frac{d^{2} y_{p}}{d t^{2}} & =-25 A \sin (5 t)-25 B \cos (5 t)
\end{aligned}
$$

Substituting these into the given equation, we have

$$
\begin{aligned}
{[-25 A \sin (5 t)-25 B \cos (5 t)]-8[5 A \cos (5 t)-5 B \sin (5 t)] } & \\
+15[A \sin (5 t)+B \cos (5 t)] & =5 \sin (5 t) \\
(-10 A+40 B) \sin (5 t)+(-10 B-40 A) \cos (5 t) & =5 \sin (5 t)
\end{aligned}
$$

Equating coefficients, we obtain the system of equations

$$
-10 A+40 B=5 \quad \text { and } \quad-10 B-40 A=0
$$

with solution $A=-\frac{1}{34}$ and $B=\frac{2}{17}$. Hence the general solution of the nonhomogeneous equation is

$$
y=y_{c}+y_{p}=C_{1} e^{5 t}+C_{2} e^{3 t}-\frac{1}{34} \sin (5 t)+\frac{2}{17} \cos (5 t)
$$

(b) The solution of the corresponding homogeneous equation is

$$
y_{c}=C_{1} e^{-4 t}+C_{2} t e^{-4 t}
$$

The appropriate form of the particular solution is

$$
\begin{aligned}
y_{p} & =A t^{3}+B t^{2}+D t+E \\
\frac{d y_{p}}{d t} & =3 A t^{2}+2 B t+D \\
\frac{d^{2} y_{p}}{d t^{2}} & =6 A t+2 B
\end{aligned}
$$

Substituting these into the given equation, we have

$$
\begin{aligned}
{[6 A t+2 B]+8\left[3 A t^{2}+2 B t+D\right]+16\left[A t^{3}+B t^{2}+D t+E\right] } & =64 t^{3} \\
16 A t^{3}+(24 A+16 B) t^{2}+(6 A+16 B+16 D) t+(2 B+8 D+16 E) & =64 t^{3}
\end{aligned}
$$

Equating coefficients, we obtain the system of equations

$$
16 A=64, \quad 24 A+16 B=0, \quad 6 A+16 B+16 D=0, \quad 2 B+8 D+16 E=0
$$

with solution $A=4, B=-6, D=\frac{9}{2}$ and $E=-\frac{3}{2}$. Hence the general solution of the nonhomogeneous equation is

$$
y=y_{c}+y_{p}=C_{1} e^{-4 t}+C_{2} t e^{-4 t}+4 t^{3}-6 t^{2}+\frac{9}{2} t-\frac{3}{2}
$$

[4] (c) The solution of the corresponding homogeneous equation is

$$
y_{c}=C_{1} e^{t} \cos (2 t)+C_{2} e^{t} \sin (2 t) .
$$

The appropriate form of the particular solution is

$$
\begin{aligned}
y_{p} & =A t e^{-t}+B e^{-t} \\
\frac{d y_{p}}{d t} & =-A t e^{-t}+(A-B) e^{-t} \\
\frac{d^{2} y_{p}}{d t^{2}} & =A t e^{-t}+(B-2 A) e^{-t}
\end{aligned}
$$

Substituting these into the given equation, we have

$$
\begin{aligned}
{\left[A t e^{-t}+(B-2 A) e^{-t}\right]-2\left[-A t e^{-t}+(A-B) e^{-t}\right]+5\left[A t e^{-t}+B e^{-t}\right] } & =16 t e^{-t} \\
8 A t e^{-t}+(8 B-4 A) e^{-t} & =16 t e^{-t}
\end{aligned}
$$

Equating coefficients, we obtain the system of equations

$$
8 A=16 \quad \text { and } \quad 8 B-4 A=0
$$

with solution $A=2$ and $B=1$. Hence the general solution of the nonhomogeneous equation is

$$
y=y_{c}+y_{p}=C_{1} e^{t} \cos (2 t)+C_{2} e^{t} \sin (2 t)+2 t e^{-t}+e^{-t} .
$$

[5]
(d) The solution of the corresponding homogeneous equation is

$$
y_{c}=C_{1} \cos \left(\frac{t}{3}\right)+C_{2} \sin \left(\frac{t}{3}\right) .
$$

Since the nonhomogeneous function $g(t)$ is also a solution of the corresponding homogeneous equation, the appropriate form of the particular solution is

$$
\begin{aligned}
y_{p} & =A t \sin \left(\frac{t}{3}\right)+B t \cos \left(\frac{t}{3}\right) \\
\frac{d y_{p}}{d t} & =\frac{1}{3} A t \cos \left(\frac{t}{3}\right)+A \sin \left(\frac{t}{3}\right)-\frac{1}{3} B t \sin \left(\frac{t}{3}\right)+B \cos \left(\frac{t}{3}\right) \\
\frac{d^{2} y_{p}}{d t^{2}} & =-\frac{1}{9} A t \sin \left(\frac{t}{3}\right)+\frac{2}{3} A \cos \left(\frac{t}{3}\right)-\frac{1}{9} B t \cos \left(\frac{t}{3}\right)-\frac{2}{3} B \sin \left(\frac{t}{3}\right)
\end{aligned}
$$

Substituting these into the given equation, we have

$$
\begin{aligned}
& 9\left[-\frac{1}{9} A t \sin \left(\frac{t}{3}\right)+\frac{2}{3} A \cos \left(\frac{t}{3}\right)-\frac{1}{9} B t \cos \left(\frac{t}{3}\right)-\frac{2}{3} B \sin \left(\frac{t}{3}\right)\right] \\
&+\left[A t \sin \left(\frac{t}{3}\right)+B t \cos \left(\frac{t}{3}\right)\right]=\sin \left(\frac{t}{3}\right) \\
& 6 A \cos \left(\frac{t}{3}\right)-6 B \sin \left(\frac{t}{3}\right)=\sin \left(\frac{t}{3}\right) .
\end{aligned}
$$

Equating coefficients, we obtain the system of equations

$$
6 A=0 \quad \text { and } \quad-6 B=1
$$

with solution $A=0$ and $B=-\frac{1}{6}$. Hence the general solution of the nonhomogeneous equation is

$$
y=y_{c}+y_{p}=C_{1} \cos \left(\frac{t}{3}\right)+C_{2} \sin \left(\frac{t}{3}\right)-\frac{1}{6} t \cos \left(\frac{t}{3}\right) .
$$

[5] (e) The solution of the corresponding homogeneous equation is

$$
y_{c}=C_{1} e^{\frac{7 t}{2}}+C_{2} t e^{\frac{7 t}{2}}
$$

Since both $e^{\frac{7 t}{2}}$ and $t e^{\frac{7 t}{2}}$ are the solutions of the corresponding homogeneous equation, the appropriate form of the particular solution is

$$
\begin{aligned}
y_{p} & =A t^{2} e^{\frac{7 t}{2}} \\
\frac{d y_{p}}{d t} & =\frac{7}{2} A t^{2} e^{\frac{7 t}{2}}+2 A t e^{\frac{7 t}{2}} \\
\frac{d^{2} y_{p}}{d t^{2}} & =\frac{49}{4} A t^{2} e^{\frac{7 t}{2}}+14 A t e^{\frac{7 t}{2}}+2 A e^{\frac{7 t}{2}}
\end{aligned}
$$

Substituting these into the given equation, we have

$$
\begin{array}{r}
4\left[\frac{49}{4} A t^{2} e^{\frac{7 t}{2}}+14 A t e^{\frac{7 t}{2}}+2 A e^{\frac{7 t}{2}}\right]-28\left[\frac{7}{2} A t^{2} e^{\frac{7 t}{2}}+2 A t e^{\frac{7 t}{2}}\right]+49\left[A t^{2} e^{\frac{7 t}{2}}\right]=e^{\frac{7 t}{2}} \\
8 A e^{\frac{7 t}{2}}=e^{\frac{7 t}{2}}
\end{array}
$$

Equating coefficients, we see that $8 A=1$ so $A=\frac{1}{8}$. Hence the general solution of the nonhomogeneous equation is

$$
y=y_{c}+y_{p}=C_{1} e^{\frac{7 t}{2}}+C_{2} t e^{\frac{7 t}{2}}+\frac{1}{8} t^{2} e^{\frac{7 t}{2}} .
$$

[8] 3. The corresponding homogeneous ODE has characteristic equation

$$
r^{4}+4 r^{3}-5 r^{2}=r^{2}(r+5)(r-1)=0
$$

It has a double root $r=0$, and distinct real roots $r=-5$ and $r=1$, so its general solution is

$$
y_{c}=C_{1}+C_{2} t+C_{3} e^{-5 t}+C_{4} e^{t}
$$

The appropriate form of the particular solution of the given equation, then, is

$$
\begin{aligned}
y_{p} & =A t e^{t}+B t^{2} \\
\frac{d y_{p}}{d t} & =A t e^{t}+A e^{t}+2 B t \\
\frac{d^{2} y_{p}}{d t^{2}} & =A t e^{t}+2 A e^{t}+2 B \\
\frac{d^{3} y_{p}}{d t^{3}} & =A t e^{t}+3 A e^{t} \\
\frac{d^{4} y_{p}}{d t^{4}} & =A t e^{t}+4 A e^{t} .
\end{aligned}
$$

Substituting these into the nonhomogeneous equation, we obtain

$$
\begin{aligned}
{\left[A t e^{t}+4 A e^{t}\right]+4\left[A t e^{t}+3 A e^{t}\right]-5\left[A t e^{t}+2 A e^{t}+2 B\right] } & =18 e^{t}-10 \\
6 A e^{t}-10 B & =18 e^{t}-10
\end{aligned}
$$

so $6 A=18$ (and hence $A=3$) and $-10 B=-10$ (implying $B=1$). Thus the solution of the given equation is

$$
y=y_{c}+y_{p}=C_{1}+C_{2} t+C_{3} e^{-5 t}+C_{4} e^{t}+3 t e^{t}+t^{2} .
$$

