MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

SOLUTIONS

[2] 1. (a) The characteristic equation is

$$
9 r^{2}+1=0
$$

with roots

$$
\begin{aligned}
r^{2} & =-\frac{1}{9} \\
r & = \pm \frac{1}{3} i
\end{aligned}
$$

These are complex conjugates with $\lambda=0$ and $\mu=\frac{1}{3}$. Hence the general solution is

$$
y=C_{1} \cos \left(\frac{t}{3}\right)+C_{2} \sin \left(\frac{t}{3}\right) .
$$

[2] (b) The characteristic equation is

$$
r^{2}-2 r+5=0
$$

with roots

$$
r=\frac{2 \pm \sqrt{4-20}}{2}=1 \pm 2 i
$$

These are complex conjugates with $\lambda=1$ and $\mu=2$. Hence the general solution is

$$
y=C_{1} e^{t} \cos (2 t)+C_{2} e^{t} \sin (2 t)
$$

[2] (c) The characteristic equation is

$$
r^{2}-8 r+15=(r-5)(r-3)=0
$$

with roots $r=5$ and $r=3$. Since these roots are real and distinct, we know that the general solution is

$$
y=C_{1} e^{5 t}+C_{2} e^{3 t}
$$

[2] (d) The characteristic equation is

$$
r^{2}+8 r+16=(r+4)^{2}=0
$$

with a double root $r=-4$. Hence the general solution is

$$
y=C_{1} e^{-4 t}+C_{2} t e^{-4 t} .
$$

[2] (e) The characteristic equation is

$$
2 r^{2}+11 r+12=(2 r+3)(r+4)=0
$$

with roots $r=-\frac{3}{2}$ and $r=-4$. Since these roots are real and distinct, we know that the general solution is

$$
y=C_{1} e^{-\frac{3}{2} t}+C_{2} e^{-4 t}
$$

[3] 2. (a) The characteristic equation is

$$
r^{2}+10 r+34=0
$$

with roots

$$
r=\frac{-10 \pm \sqrt{100-136}}{2}=-5 \pm 3 i .
$$

These are complex conjugates with $\lambda=-5$ and $\mu=3$. Hence the general solution is

$$
y=C_{1} e^{-5 t} \cos (3 t)+C_{2} e^{-5 t} \sin (3 t)
$$

and so

$$
y^{\prime}=-5 C_{1} e^{-5 t} \cos (3 t)-3 C_{1} e^{-5 t} \sin (3 t)-5 C_{2} e^{-5 t} \sin (3 t)+3 C_{2} e^{-5 t} \cos (3 t)
$$

From the first initial condition,

$$
y(0)=C_{1}=2 .
$$

From the second initial condition,

$$
y^{\prime}(0)=-5 C_{1}+3 C_{2}=2 \quad \Longrightarrow \quad 3 C_{2}=12 \quad \Longrightarrow \quad C_{2}=4 \text {. }
$$

Hence the particular solution is

$$
y=2 e^{-5 t} \cos (3 t)+4 e^{-5 t} \sin (3 t)
$$

[3] (b) The characteristic equation is

$$
4 r^{2}-28 r+49=(2 r-7)^{2}=0
$$

with a double root $r=\frac{7}{2}$. Hence the general solution is

$$
y=C_{1} e^{\frac{7}{2} t}+C_{2} t e^{\frac{7}{2} t}
$$

and so

$$
y^{\prime}=\frac{7}{2} C_{1} e^{\frac{7}{2} t}+C_{2} e^{\frac{7}{2} t}+\frac{7}{2} C_{2} t e^{\frac{7}{2} t} .
$$

From the first initial condition,

$$
y(0)=C_{1}=0 .
$$

From the second initial condition,

$$
y^{\prime}(0)=\frac{7}{2} C_{1}+C_{2}=-4 \quad \Longrightarrow \quad C_{2}=-4
$$

Hence the particular solution is

$$
y=-4 t e^{\frac{7}{2} t}
$$

[3] 3. (a) We have

$$
\begin{aligned}
W(t) & =y_{1} \frac{d y_{2}}{d t}-\frac{d y_{1}}{d t} y_{2} \\
& =\ln (t)\left(\frac{2}{t}\right)-\frac{1}{t}\left[\ln \left(t^{2}\right)\right] \\
& =\frac{2 \ln (t)}{t}-\frac{\ln \left(t^{2}\right)}{t} \\
& =\frac{\ln \left(t^{2}\right)}{t}-\frac{\ln \left(t^{2}\right)}{t} \\
& =0
\end{aligned}
$$

Since $W(t)$ is zero for all t, y_{1} and y_{2} do not represent a fundamental set of solutions.
[3] (b) We have

$$
\begin{aligned}
W(t) & =y_{1} \frac{d y_{2}}{d t}-\frac{d y_{1}}{d t} y_{2} \\
& =\sin (t)[2 \cos (2 t)]-\cos (t) \sin (2 t) \\
& =2 \sin (t) \cos (2 t)-\cos (t) \sin (2 t) \\
& =2 \sin (t)\left[2 \cos ^{2}(t)-1\right]-\cos (t)[2 \sin (t) \cos (t)] \\
& =4 \sin (t) \cos ^{2}(t)-2 \sin (t)-2 \sin (t) \cos ^{2}(t) \\
& =2 \sin (t) \cos ^{2}(t)-2 \sin (t) \\
& =2 \sin (t)\left[\cos ^{2}(t)-1\right] \\
& =2 \sin (t)\left[-\sin ^{2}(t)\right] \\
& =-2 \sin ^{3}(t) .
\end{aligned}
$$

Since $W(t)$ is not identically zero (the function $\sin ^{3}(t)$ is zero only for $t=k \pi, k \in \mathbb{Z}$), y_{1} and y_{2} represent a fundamental set of solutions.
[6] 4. (a) Assume that $y=v(t) t^{2}$ so

$$
\frac{d y}{d t}=\frac{d v}{d t} t^{2}+2 v(t) t \quad \text { and } \quad \frac{d^{2} y}{d t^{2}}=\frac{d^{2} v}{d t^{2}} t^{2}+4 \frac{d v}{d t} t+2 v(t) .
$$

Substituting these into the ODE yields

$$
\begin{aligned}
3 t^{2}\left[\frac{d^{2} v}{d t^{2}} t^{2}+4 \frac{d v}{d t} t+2 v(t)\right]-t\left[\frac{d v}{d t} t^{2}+2 v(t) t\right]-4 v(t) t^{2} & =0 \\
3 t^{4} \frac{d^{2} v}{d t^{2}}+11 t^{3} \frac{d v}{d t} & =0 .
\end{aligned}
$$

Let $u=\frac{d v}{d t}$ so $\frac{d u}{d t}=\frac{d^{2} v}{d t^{2}}$. The equation reduces to

$$
\begin{aligned}
3 t^{4} \frac{d u}{d t}+11 t^{3} u & =0 \\
\frac{d u}{u} & =-\frac{11}{3} \frac{d t}{t} \\
\int \frac{d u}{u} & =-\frac{11}{3} \int \frac{d t}{t} \\
\ln (u) & =-\frac{11}{3} \ln (t)+C_{2} \\
u & =C_{2} t^{-\frac{11}{3}} \\
\frac{d v}{d t} & =C_{2} t^{-\frac{11}{3}} \\
v & =C_{2} t^{-\frac{8}{3}}+C_{1} .
\end{aligned}
$$

Hence

$$
y=\left(C_{2} t^{-\frac{8}{3}}+C_{1}\right) t^{2}=C_{1} t^{2}+C_{2} t^{-\frac{2}{3}}
$$

is the general solution, and

$$
y_{2}=t^{-\frac{2}{3}} .
$$

To verify that y_{1} and y_{2} form a fundamental set of solutions, observe that

$$
\begin{aligned}
W(t) & =y_{1} \frac{d y_{2}}{d t}-y_{2} \frac{d y_{1}}{d t} \\
& =t^{2}\left(-\frac{2}{3} t^{-\frac{5}{3}}\right)-t^{-\frac{2}{3}}(2 t) \\
& =-\frac{2}{3} t^{\frac{1}{3}}-2 t^{\frac{1}{3}} \\
& =\frac{8}{3} \sqrt[3]{t}
\end{aligned}
$$

which is not identically zero.
[6] (b) Assume that $y=v(t) t^{-1}$ so

$$
\frac{d y}{d t}=\frac{d v}{d t} t^{-1}-v(t) t^{-2} \quad \text { and } \quad \frac{d^{2} y}{d t^{2}}=\frac{d^{2} v}{d t^{2}} t^{-1}-2 \frac{d v}{d t} t^{-2}+2 v(t) t^{-3}
$$

Substituting these into the ODE yields

$$
\begin{aligned}
t^{2}\left[\frac{d^{2} v}{d t^{2}} t^{-1}-2 \frac{d v}{d t} t^{-2}+2 v(t) t^{-3}\right]+3 t\left[\frac{d v}{d t} t^{-1}-v(t) t^{-2}\right]+v(t) t^{-1} & =0 \\
t \frac{d^{2} v}{d t^{2}}+\frac{d v}{d t} & =0
\end{aligned}
$$

Let $u=\frac{d v}{d t}$ so $\frac{d u}{d t}=\frac{d^{2} v}{d t^{2}}$. The equation reduces to

$$
\begin{aligned}
t \frac{d u}{d t}+u & =0 \\
\int \frac{d u}{u} & =-\int \frac{d t}{t} \\
\ln (u) & =-\ln (t)+C_{2} \\
& =\ln \left(t^{-1}\right)+C_{2} \\
u & =\frac{C_{2}}{t} \\
\frac{d v}{d t} & =\frac{C_{2}}{t} \\
v & =C_{2} \ln (t)+C_{1} .
\end{aligned}
$$

Hence

$$
y=\left[C_{2} \ln (t)+C_{1}\right] \cdot \frac{1}{t}=\frac{C_{1}}{t}+\frac{C_{2} \ln (t)}{t}
$$

is the general solution, and

$$
y_{2}=\frac{\ln (t)}{t} .
$$

To verify that y_{1} and y_{2} form a fundamental set of solutions, observe that

$$
\begin{aligned}
W(t) & =y_{1} \frac{d y_{2}}{d t}-y_{2} \frac{d y_{1}}{d t} \\
& =\frac{1}{t}\left(\frac{1}{t^{2}}-\frac{\ln (t)}{t^{2}}\right)-\frac{\ln (t)}{t}\left(-\frac{1}{t^{2}}\right) \\
& =\frac{1}{t^{3}},
\end{aligned}
$$

which is never zero.
[6] (c) Assume that $y=v(t) \sqrt{t}$ so

$$
\frac{d y}{d t}=\frac{d v}{d t} \sqrt{t}+\frac{1}{2} v(t) t^{-\frac{1}{2}} \quad \text { and } \quad \frac{d^{2} y}{d t^{2}}=\frac{d^{2} v}{d t^{2}} \sqrt{t}+\frac{d v}{d t} t^{-\frac{1}{2}}-\frac{1}{4} v(t) t^{-\frac{3}{2}}
$$

Substituting these into the ODE yields

$$
\begin{aligned}
2 t^{2}\left[\frac{d^{2} v}{d t^{2}} \sqrt{t}+\frac{d v}{d t} t^{-\frac{1}{2}}-\frac{1}{4} v(t) t^{-\frac{3}{2}}\right]+5 t\left[\frac{d v}{d t} \sqrt{t}+\frac{1}{2} v(t) t^{-\frac{1}{2}}\right]-2 v(t) \sqrt{t} & =0 \\
2 t^{\frac{5}{2}} \frac{d^{2} v}{d t^{2}}+7 t^{\frac{3}{2}} \frac{d v}{d t} & =0
\end{aligned}
$$

Let $u=\frac{d v}{d t}$ so $\frac{d u}{d t}=\frac{d^{2} v}{d t^{2}}$. The equation reduces to

$$
\begin{aligned}
2 t^{\frac{5}{2}} \frac{d u}{d t}+7 t^{\frac{3}{2}} u & =0 \\
\int \frac{d u}{u} & =-\frac{7}{2} \int \frac{d t}{t} \\
\ln (u) & =-\frac{7}{2} \ln (t)+C_{2} \\
& =\ln \left(t^{-\frac{7}{2}}\right)+C_{2} \\
u & =C_{2} t^{-\frac{7}{2}} \\
v & =C_{2} t^{-\frac{5}{2}}+C_{1} .
\end{aligned}
$$

Hence

$$
y=\left(C_{2} t^{-\frac{5}{2}}+C_{1}\right) \sqrt{t}=C_{1} \sqrt{t}+\frac{C_{2}}{t^{2}}
$$

is the general solution, and

$$
y_{2}=\frac{1}{t^{2}} .
$$

To verify that y_{1} and y_{2} form a fundamental set of solutions, observe that

$$
\begin{aligned}
W(t) & =y_{1} \frac{d y_{2}}{d t}-y_{2} \frac{d y_{1}}{d t} \\
& =\sqrt{t}\left(-\frac{2}{t^{3}}\right)-\frac{1}{t^{2}}\left(\frac{1}{2} t^{-\frac{1}{2}}\right) \\
& =-\frac{5}{2} t^{-\frac{5}{2}}
\end{aligned}
$$

which is never zero.

