# MEMORIAL UNIVERSITY OF NEWFOUNDLAND <br> DEPARTMENT OF MATHEMATICS AND STATISTICS 

## Assignment 4

MATH 2260
Spring 2019

## SOLUTIONS

[3] 1. (a) We can rewrite the equation as

$$
\frac{d y}{d t}-\frac{t+1}{t^{3}} y=\frac{1}{t^{3}(t-4)}
$$

so

$$
p(t)=-\frac{t+1}{t^{3}} \quad \text { and } \quad g(t)=\frac{1}{t^{3}(t-4)}
$$

Both functions are discontinuous at $t=0$, while $g(t)$ is also discontinuous at $t=4$. Hence the possible intervals of definition are $t<0,0<t<4$, and $t>4$. The initial condition occurs at $t=2$, however, so the interval of definition for the solution of this IVP is $0<t<4$.
(b) The ODE is the same as the one given in part (a), so it has the same possible intervals of definition. In this case, the initial condition occurs at $t=-3$, however, so the required interval of definition is $t<0$.
[3] (c) Here,

$$
p(t)=\tan (t) \quad \text { and } \quad g(t) \equiv 0
$$

Note that $p(t)$ is discontinuous for all $t=\frac{k \pi}{2}$ where $k$ is an odd integer, while $g(t)$ is continuous everywhere. Since the initial condition occurs at $t=\pi$, the interval of definition is

$$
\begin{equation*}
\frac{\pi}{2}<t<\frac{3 \pi}{2} \tag{3}
\end{equation*}
$$

(d) We rewrite the equation as

$$
\frac{d y}{d t}-\frac{1}{(3-t)(3+t)} y=\frac{\cos (3 t)}{(3-t)(3+t)}
$$

Observe that both $p(t)$ and $g(t)$ are discontinuous at $t=-3$ and $t=3$, so the possible intervals of definition are $t<-3,-3<t<3$, and $t>3$. Since the initial condition occurs at $t=0$, the required interval of definition in this instance is $-3<t<3$.
2. (a) We can rewrite the equation as

$$
\begin{equation*}
\frac{d y}{d t}=\frac{\sin (t)-y^{2}-1}{t y-2 y+4 t-8}=\frac{\sin (t)-y^{2}-1}{(t-2)(y+4)}=f(t, y) \tag{3}
\end{equation*}
$$

so

$$
\frac{\partial f}{\partial y}=\frac{1-\sin (t)-y^{2}-8 y}{(t-2)(y+4)^{2}}
$$

Note that both of these are discontinuous at $t=2$ and $y=-4$. Hence a rectangle around the point $(0,3)$ which avoids these values is given by

$$
-1<t<1, \quad 0<y<6
$$

[3] (b) A rectangle around the point $(5,-5)$ which avoids $t=2$ and $y=-4$ is given by

$$
4<t<6, \quad-10<y<-\frac{9}{2} .
$$

[3] (c) Because the initial condition occurs at $y=-4$, which is a discontinuity of $f(t, y)$, we cannot draw a rectangle around $(1,-4)$ in which $f(t, y)$ and $\frac{\partial f}{\partial y}$ are continuous. Hence the requirements of the theorem cannot be satisfied.
[2] 3. (a) The only difference between this model and the original model we derived in class is that the rate of inflow/outflow is now $r t$ rather than $r$. Thus the appropriate differential equation is

$$
\frac{d Q}{d t}=k r t-\frac{r t Q(t)}{V}
$$

(b) It helps to first rewrite this equation as

$$
\frac{d Q}{d t}+\frac{r t}{V} Q(t)=k r t
$$

This is still a linear equation with

$$
p(t)=\frac{r t}{V} \quad \text { and } \quad g(t)=k r t
$$

Thus an appropriate integrating factor is

$$
\mu=e^{\int \frac{r t}{V} d t}=e^{\frac{r t^{2}}{2 V}} .
$$

Hence the equation becomes

$$
\begin{aligned}
\frac{d}{d t}\left[e^{\frac{r t^{2}}{2 V}} Q(t)\right] & =k r t e^{\frac{r t^{2}}{2 V}} \\
e^{\frac{r t^{2}}{2 V}} Q(t) & =k r \int t e^{\frac{r t^{2}}{2 V}} d t \\
& =k V e^{\frac{r t^{2}}{2 V}}+C
\end{aligned}
$$

where the integral can be evaluated by $u$-substitution. Thus the general solution is

$$
Q(t)=k V+C e^{-\frac{r t^{2}}{2 V}} .
$$

Since $Q(0)=Q_{0}$, we have

$$
\begin{aligned}
Q_{0} & =k V+C \\
C & =Q_{0}-k V
\end{aligned}
$$

and so the particular solution is

$$
Q(t)=k V+\left(Q_{0}-k V\right) e^{-\frac{r t^{2}}{2 V}}
$$

As $t \rightarrow \infty$ we can observe that $Q(t) \rightarrow k V$, and so the salt concentration approaches $\frac{k V}{V}=k$. This is the same result we obtained for our original model. Thus the change to the rate of inflow/outflow has no effect on the long-term behaviour of the salt concentration.
[4]
4. (a) We set

$$
\begin{aligned}
\frac{d y}{d t} & =0 \\
r y\left(1-\frac{y}{K}\right)-F y & =0 \\
(r-F) y-\frac{r}{K} y^{2} & =0 \\
y\left[(r-F)-\frac{r}{K} y\right] & =0,
\end{aligned}
$$

so either $y=0$ or $y=K\left(1-\frac{F}{r}\right)$. These are the fixed points of Equation (3). Observe that the number of fixed points is the same as Equation (1), and indeed 0 is a fixed point in both cases. Now, however, the fixed point $y=K$ of Equation (1) has been replaced by the fixed point $y=K\left(1-\frac{F}{r}\right)$; note that this means that the fixed point has been made smaller (closer to 0 ) since

$$
1-\frac{F}{R}<1 .
$$

[5]
(b) See Figure 1. We can see that $y=0$ is an unstable fixed point, while $y=K\left(1-\frac{F}{r}\right)$ is an asymptotically stable fixed point. Thus the stability of each fixed point of Equation (3) is the same as the stability of the corresponding fixed points of Equation (1).


Figure 1: The graph of $\frac{d y}{d t}$ vs. $y$ for Equation (3).
[3] (c) The effect of increasing $F$ is to shift the positive fixed point closer and closer to 0 . The codfish population will be viable as long as this fixed point remains positive, so the value
$F^{*}$ will be the value of $F$ that makes the second fixed point equal to 0 . We set

$$
\begin{aligned}
K\left(1-\frac{F^{*}}{r}\right) & =0 \\
1-\frac{F^{*}}{r} & =0 \\
F^{*} & =r
\end{aligned}
$$

Hence the population of codfish will be viable as long as $F^{*}<r$.

