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1.[3] (a) We can rewrite the equation as

dy

dt
− t+ 1

t3
y =

1

t3(t− 4)

so

p(t) = −t+ 1

t3
and g(t) =

1

t3(t− 4)
.

Both functions are discontinuous at t = 0, while g(t) is also discontinuous at t = 4.
Hence the possible intervals of definition are t < 0, 0 < t < 4, and t > 4. The initial
condition occurs at t = 2, however, so the interval of definition for the solution of this
IVP is 0 < t < 4.

[3] (b) The ODE is the same as the one given in part (a), so it has the same possible intervals of
definition. In this case, the initial condition occurs at t = −3, however, so the required
interval of definition is t < 0.

[3] (c) Here,
p(t) = tan(t) and g(t) ≡ 0.

Note that p(t) is discontinuous for all t = kπ
2

where k is an odd integer, while g(t)
is continuous everywhere. Since the initial condition occurs at t = π, the interval of
definition is

π

2
< t <

3π

2
.

[3] (d) We rewrite the equation as

dy

dt
− 1

(3− t)(3 + t)
y =

cos(3t)

(3− t)(3 + t)
.

Observe that both p(t) and g(t) are discontinuous at t = −3 and t = 3, so the possible
intervals of definition are t < −3, −3 < t < 3, and t > 3. Since the initial condition
occurs at t = 0, the required interval of definition in this instance is −3 < t < 3.

2.[3] (a) We can rewrite the equation as

dy

dt
=

sin(t)− y2 − 1

ty − 2y + 4t− 8
=

sin(t)− y2 − 1

(t− 2)(y + 4)
= f(t, y),

so
∂f

∂y
=

1− sin(t)− y2 − 8y

(t− 2)(y + 4)2
.

Note that both of these are discontinuous at t = 2 and y = −4. Hence a rectangle
around the point (0, 3) which avoids these values is given by

−1 < t < 1, 0 < y < 6.



[3] (b) A rectangle around the point (5,−5) which avoids t = 2 and y = −4 is given by

4 < t < 6, −10 < y < −9

2
.

[3] (c) Because the initial condition occurs at y = −4, which is a discontinuity of f(t, y), we
cannot draw a rectangle around (1,−4) in which f(t, y) and ∂f

∂y
are continuous. Hence

the requirements of the theorem cannot be satisfied.

3.[2] (a) The only difference between this model and the original model we derived in class is
that the rate of inflow/outflow is now rt rather than r. Thus the appropriate differential
equation is

dQ

dt
= krt− rtQ(t)

V
.

[5] (b) It helps to first rewrite this equation as

dQ

dt
+
rt

V
Q(t) = krt.

This is still a linear equation with

p(t) =
rt

V
and g(t) = krt.

Thus an appropriate integrating factor is

µ = e
∫

rt
V
dt = e

rt2

2V .

Hence the equation becomes

d

dt

[
e

rt2

2V Q(t)
]

= krte
rt2

2V

e
rt2

2V Q(t) = kr

∫
te

rt2

2V dt

= kV e
rt2

2V + C,

where the integral can be evaluated by u-substitution. Thus the general solution is

Q(t) = kV + Ce−
rt2

2V .

Since Q(0) = Q0, we have

Q0 = kV + C

C = Q0 − kV

and so the particular solution is

Q(t) = kV + (Q0 − kV )e−
rt2

2V .

As t → ∞ we can observe that Q(t) → kV , and so the salt concentration approaches
kV
V

= k. This is the same result we obtained for our original model. Thus the change to
the rate of inflow/outflow has no effect on the long-term behaviour of the salt concen-
tration.



4.[4] (a) We set

dy

dt
= 0

ry
(

1− y

K

)
− Fy = 0

(r − F )y − r

K
y2 = 0

y
[
(r − F )− r

K
y
]

= 0,

so either y = 0 or y = K

(
1− F

r

)
. These are the fixed points of Equation (3). Observe

that the number of fixed points is the same as Equation (1), and indeed 0 is a fixed point
in both cases. Now, however, the fixed point y = K of Equation (1) has been replaced

by the fixed point y = K

(
1− F

r

)
; note that this means that the fixed point has been

made smaller (closer to 0) since

1− F

R
< 1.

[5] (b) See Figure 1. We can see that y = 0 is an unstable fixed point, while y = K

(
1− F

r

)
is

an asymptotically stable fixed point. Thus the stability of each fixed point of Equation (3)
is the same as the stability of the corresponding fixed points of Equation (1).
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Figure 1: The graph of
dy

dt
vs. y for Equation (3).

[3] (c) The effect of increasing F is to shift the positive fixed point closer and closer to 0. The
codfish population will be viable as long as this fixed point remains positive, so the value



F ∗ will be the value of F that makes the second fixed point equal to 0. We set

K

(
1− F ∗

r

)
= 0

1− F ∗

r
= 0

F ∗ = r.

Hence the population of codfish will be viable as long as F ∗ < r.


