MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

SOLUTIONS

[3] 1. (a) We can rewrite the given equation as

$$
\begin{aligned}
\frac{1}{(y+2)(y-3)} d y & =\tan (t) d t \\
\int \frac{1}{(y+2)(y-3)} d y & =\int \tan (t) d t \\
\int\left(\frac{\frac{1}{5}}{y-3}-\frac{\frac{1}{5}}{y+2}\right) d y & =-\ln (\cos (t))+C \\
\frac{1}{5} \ln (y-3)-\frac{1}{5} \ln (y+2) & =-\ln (\cos (t))+C .
\end{aligned}
$$

This is sufficient, but note that we can simplify this to an extent. If we replace C with $\ln (C)$ and use the properties of logarithms, we have

$$
\begin{aligned}
\frac{1}{5}[\ln (y-3)-\ln (y+2)] & =-\ln (\cos (t))+\ln (C) \\
\ln \left(\frac{y-3}{y+2}\right)^{\frac{1}{5}} & =\ln \left(\frac{C}{\cos (t)}\right) \\
\left(\frac{y-3}{y+2}\right)^{\frac{1}{5}} & =\frac{C}{\cos (t)}
\end{aligned}
$$

which is a bit simpler than our original answer.
[3] (b) The equation becomes

$$
\begin{aligned}
\frac{t}{1+y^{2}} \frac{d y}{d t} & =\sqrt{t}-\frac{t^{2}}{e^{t}} \\
\frac{1}{1+y^{2}} d y & =\left(t^{-\frac{1}{2}}-t e^{-t}\right) d t \\
\int \frac{1}{1+y^{2}} d y & =\int\left(t^{-\frac{1}{2}}-t e^{-t}\right) d t \\
\arctan (y) & =2 \sqrt{t}+t e^{-t}+e^{-t}+C
\end{aligned}
$$

where the integral on the righthand side can be evaluated using integration by parts with $u=t$ and $d v=e^{-t} d t$.
[2] 2. (a) We can rewrite the equation as

$$
\frac{d y}{d t}=\frac{y+t}{y-t}
$$

So let

$$
\begin{aligned}
f(t, y) & =\frac{y+t}{y-t} \\
f(k t, k y) & =\frac{k y+k t}{k y-k t} \\
& =\frac{k(y+t)}{k(y-t)} \\
& =\frac{y+t}{y-t} \\
& =f(t, y)
\end{aligned}
$$

Hence this equation is homogeneous.
[4] (b) Let $y=v t$ so $\frac{d y}{d t}=v+t \frac{d v}{d t}$. The equation becomes

$$
\begin{aligned}
v+t \frac{d v}{d t} & =\frac{v t+t}{v t-t} \\
& =\frac{v+1}{v-1} \\
t \frac{d v}{d t} & =\frac{v+1}{v-1}-v \\
& =\frac{-v^{2}+2 v+1}{v-1} \\
\int \frac{v-1}{-v^{2}+2 v+1} d v & =\frac{1}{t} d t \\
-\frac{v-1}{-v^{2}+2 v+1} d v & =\int \frac{1}{t} d t \\
\ln \left(-v^{2}+2 v+1\right) & =\ln (t)+C \\
\left(-v^{2}+2 v+1\right)^{-\frac{1}{2}} & =C t \\
-v^{2}+2 v+1 & =\frac{C}{t^{2}} \\
-\frac{y^{2}}{t^{2}}+\frac{2 y}{t}+1 & =\frac{C}{t^{2}} \\
-y^{2}+2 t y+t^{2} & =C .
\end{aligned}
$$

Note that the integration on the lefthand side can be performed by u-substitution, with $u=-v^{2}+2 v+1$.
[5] 3. We rewrite the equation as

$$
y^{-\frac{1}{2}} \frac{d y}{d t}+2 \cos (t) y^{\frac{1}{2}}=2 \cos (t)
$$

This is a Bernoulli equation with $n=\frac{1}{2}$, so we set

$$
v=y^{\frac{1}{2}} \quad \text { and } \quad 2 \frac{d v}{d t}=y^{-\frac{1}{2}} \frac{d y}{d t}
$$

The equation becomes

$$
\begin{aligned}
2 \frac{d v}{d t}+2 \cos (t) v & =2 \cos (t) \\
\frac{d v}{d t}+\cos (t) v & =\cos (t)
\end{aligned}
$$

This is a linear ODE with integrating factor

$$
\mu=e^{\int \cos (t) d t}=e^{\sin (t)}
$$

Multiplying both sides of the equation by μ, we obtain

$$
\begin{aligned}
\frac{d}{d t}\left[e^{\sin (t)} v\right] & =e^{\sin (t)} \cos (t) \\
e^{\sin (t)} v & =\int e^{\sin (t)} \cos (t) \\
e^{\sin (t)} v & =e^{\sin (t)}+C \\
v & =1+C e^{-\sin (t)} \\
y^{\frac{1}{2}} & =1+C e^{-\sin (t)} \\
y & =\left[1+C e^{-\sin (t)}\right]^{2}
\end{aligned}
$$

[4] 4. (a) Here,

$$
M(t, y)=\frac{y^{4} \csc (\sqrt{t}) \cot (\sqrt{t})}{\sqrt{t}}-e^{t} \quad \text { and } \quad N(t, y)=-8 y^{3} \csc (\sqrt{t})
$$

so

$$
\frac{\partial M}{\partial y}=\frac{4 y^{3} \csc (\sqrt{t}) \cot (\sqrt{t})}{\sqrt{t}} \quad \text { and } \quad \frac{\partial N}{\partial t}=\frac{4 y^{3} \csc (\sqrt{t}) \cot (\sqrt{t})}{\sqrt{t}}
$$

Hence this equation is exact.

Now we know that

$$
\begin{aligned}
\psi(t, y) & =-8 \int y^{3} \csc (\sqrt{t}) d y \\
& =-2 y^{4} \csc (\sqrt{t})+f(t) \\
\frac{\partial \psi}{\partial t} & =\frac{y^{4} \csc (\sqrt{t}) \cot (\sqrt{t})}{\sqrt{t}}+f^{\prime}(t) \\
\frac{y^{4} \csc (\sqrt{t}) \cot (\sqrt{t})}{\sqrt{t}}-e^{t} & =\frac{y^{4} \csc (\sqrt{t}) \cot (\sqrt{t})}{\sqrt{t}}+f^{\prime}(t) \\
-e^{t} & =f^{\prime}(t) \\
-e^{t}+C & =f(t)
\end{aligned}
$$

Hence the general solution is

$$
-2 y^{4} \csc (\sqrt{t})-e^{t}=C
$$

[5] (b) Here,

$$
M(t, y)=t y^{2}-y \quad \text { and } \quad N(t, y)=t+2 y^{3}
$$

so

$$
\frac{\partial M}{\partial y}=2 t y-1 \quad \text { and } \quad \frac{\partial N}{\partial t}=1
$$

Hence this equation is not exact. However, note that

$$
\frac{\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}}{-M}=-\frac{2 t y-2}{t y^{2}-y}=-\frac{2(t y-1)}{y(t y-1)}=-\frac{2}{y}
$$

which is purely a function of y. Thus an appropriate integrating factor is

$$
\mu=e^{-2 \int \frac{d y}{y}}=e^{-2 \ln (y)}=y^{-2}
$$

Multiplying both sides of the equation by μ, we obtain

$$
t-y^{-1}-\left(t y^{-2}+2 y\right) \frac{d y}{d t}=0
$$

Now

$$
M^{*}(t, y)=t-y^{-1} \quad \text { and } \quad N^{*}(t, y)=t y^{-2}+2 y
$$

so

$$
\frac{\partial M^{*}}{\partial y}=y^{-2} \quad \text { and } \quad \frac{\partial N^{*}}{\partial t}=y^{-2}
$$

so the equation has indeed been made exact. Then

$$
\begin{aligned}
\psi(t, y) & =\int\left(t-y^{-1}\right) d t \\
& =\frac{1}{2} t^{2}-t y^{-1}+f(y) \\
\frac{\partial \psi}{\partial y} & =t y^{-2}+f^{\prime}(y) \\
t y^{-2}+2 y & =t y^{-2}+f^{\prime}(y) \\
2 y & =f^{\prime}(y) \\
y^{2}+C & =f(y) .
\end{aligned}
$$

Thus the general solution is

$$
\frac{1}{2} t^{2}-t y^{-1}+y^{2}=C
$$

[5] (c) Here,

$$
M(t, y)=e^{y} \sin (t) \quad \text { and } \quad N(t, y)=e^{y}
$$

so

$$
\frac{\partial M}{\partial y}=e^{y} \sin (t) \quad \text { and } \quad \frac{\partial N}{\partial t}=0
$$

Hence this equation is not exact. But observe that

$$
\frac{\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}}{N}=\frac{e^{y} \sin (t)}{e^{y}}=\sin (t)
$$

which is purely a function of t. Thus a suitable integrating factor is

$$
\mu=e^{\int \sin (t) d t}=e^{-\cos (t)}
$$

Multiplying both sides of the ODE by μ, we get

$$
e^{y} e^{-\cos (t)} \sin (t)+e^{y} e^{-\cos (t)} \frac{d y}{d t}=0
$$

Now

$$
M^{*}(t, y)=e^{y} e^{-\cos (t)} \sin (t) \quad \text { and } \quad N^{*}(t, y)=e^{y} e^{-\cos (t)}
$$

so

$$
\frac{\partial M^{*}}{\partial y}=e^{y} e^{-\cos (t)} \sin (t) \quad \text { and } \quad \frac{\partial N^{*}}{\partial t}=e^{y} e^{-\cos (t)} \sin (t)
$$

so the equation is now exact. We have

$$
\begin{aligned}
\psi(t, y) & =\int e^{y} e^{-\cos (t)} d y \\
& =e^{y} e^{-\cos (t)}+f(t) \\
\frac{\partial \psi}{\partial t} & =e^{y} e^{-\cos (t)} \sin (t)+f^{\prime}(t) \\
e^{y} e^{-\cos (t)} \sin (t) & =e^{y} e^{-\cos (t)} \sin (t)+f^{\prime}(t) \\
0 & =f^{\prime}(t) \\
C & =f(t) .
\end{aligned}
$$

Thus the general solution is

$$
e^{y} e^{-\cos (t)}=C
$$

Alternatively, we could use the fact that

$$
\frac{\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}}{-M}=\frac{e^{y} \sin (t)}{-e^{y} \sin (t)}=-1
$$

which can be viewed as purely a function of y. Then the integrating factor is

$$
\mu=e^{\int(-1) d y}=e^{-y}
$$

Multiplying both sides of the ODE by μ yields

$$
\sin (t)+\frac{d y}{d t}=0
$$

In this case,

$$
M^{*}(t, y)=\sin (t) \quad \text { and } \quad N^{*}(t, y)=1
$$

so

$$
\frac{\partial M^{*}}{\partial y}=0 \quad \text { and } \quad \frac{\partial N^{*}}{\partial t}=0
$$

Again, the equation has been made exact. So

$$
\begin{aligned}
\psi(t, y) & =\int d y \\
& =y+f(t) \\
\frac{\partial \psi}{\partial t} & =f^{\prime}(t) \\
\sin (t) & =f^{\prime}(t) \\
-\cos (t)+C & =f(t) .
\end{aligned}
$$

Hence the general solution is

$$
y-\cos (t)=C
$$

(Note that these two solutions are completely equivalent: just exponentiate the second version and replace e^{C} by C to obtain the first version.)
[4] 5. (a) This equation is nonlinear and is neither separable nor a Bernoulli equation, so we should determine if it's homogeneous. The equation can be rewritten

$$
\frac{d y}{d t}=\sec \left(\frac{y}{t}\right)+\frac{y}{t}
$$

so

$$
\begin{aligned}
f(t, y) & =\sec \left(\frac{y}{t}\right)+\frac{y}{t} \\
f(k t, k y) & =\sec \left(\frac{k y}{k t}\right)+\frac{k y}{k t} \\
& =\sec \left(\frac{y}{t}\right)+\frac{y}{t} \\
& =f(t, y) .
\end{aligned}
$$

Let $y=v t$ so $\frac{d y}{d t}=v+t \frac{d v}{d t}$. The equation becomes

$$
\begin{aligned}
v+t \frac{d v}{d t} & =\sec (v)+v \\
t \frac{d v}{d t} & =\sec (v) \\
\cos (v) d v & =\frac{1}{t} d t \\
\int \cos (v) d v & =\int \frac{1}{t} d t \\
\sin (v) & =\ln (t)+C \\
\sin \left(\frac{y}{t}\right) & =\ln (t)+C
\end{aligned}
$$

To find the particular solution, we substitute the initial condition into the general solution:

$$
\begin{aligned}
\sin \left(\frac{\pi}{6}\right) & =\ln (1)+C \\
\frac{1}{2} & =C
\end{aligned}
$$

Hence the particular solution is

$$
\sin \left(\frac{y}{t}\right)=\ln (t)+\frac{1}{2}
$$

[5] (b) This is a nonlinear equation which is not separable, and it's easy to see that it is not homogeneous or a Bernoulli equation. Thus we must hope that it is either exact, or can be made exact. Here,

$$
M(t, y)=y e^{t y}+1 \quad \text { and } \quad N(t, y)=-1+t e^{t y}
$$

$$
\frac{\partial M}{\partial y}=e^{t y}+t y e^{t y} \quad \text { and } \quad \frac{\partial N}{\partial t}=e^{t y}+t y e^{t y}
$$

Hence this equation is exact.
Now we know that

$$
\begin{aligned}
\psi(t, y) & =\int\left[-1+t e^{t y}\right] d y \\
& =-y+e^{t y}+f(t) \\
\frac{\partial \psi}{\partial t} & =y e^{t y}+f^{\prime}(t) \\
y e^{t y}+1 & =y e^{t y}+f^{\prime}(t) \\
1 & =f^{\prime}(t) \\
t+C & =f(t) .
\end{aligned}
$$

Hence the general solution is

$$
-y+e^{t y}+t=C
$$

Finally, we substitute $t=0$ and $y=5$ into the general solution and find that

$$
\begin{aligned}
-5+e^{0}+0 & =C \\
C & =-4 .
\end{aligned}
$$

Thus the particular solution is

$$
-y+e^{t y}+t=-4
$$

