MEMORIAL UNIVERSITY OF NEWFOUNDLAND
 DEPARTMENT OF MATHEMATICS AND STATISTICS

Test 2

MATH 2260
Spring 2019

SOLUTIONS

1. First we rewrite the equation as

$$
\frac{d y}{d t}+\frac{1}{t \cos (t)} y=\frac{1}{2 t-1}
$$

This is a first-order linear equation with coefficients $p(t)=\frac{1}{t \cos (t)}$ and $g(t)=\frac{1}{2 t-1}$. The discontinuities in $p(t)$ will occur when $t=0$ and when $\cos (t)=0$, that is, for $t= \pm \frac{\pi}{2}, \pm \frac{3 \pi}{2}$, $\pm \frac{5 \pi}{2}, \ldots$ The only discontinuity in $g(t)$ occurs when $2 t-1=0$, that is, for $t=\frac{1}{2}$.
[3] (a) Since $t=1$ falls between the discontinuities at $t=\frac{1}{2}$ and $t=\frac{\pi}{2}$, the interval of definition is $\frac{1}{2}<t<\frac{\pi}{2}$.
[3] (b) Since $t=-1$ falls between the discontinuities at $t=-\frac{\pi}{2}$ and $t=0$, the interval of definition is $-\frac{\pi}{2}<t<0$.
[8] 2. The fixed points occur at any value of y for which $\frac{d y}{d t}=0$, namely $y=0, y=1, y=3$ and $y=6$. In the case of $y=0$ and $y=3, \frac{d y}{d t}<0$ to their left and $\frac{d y}{d t}>0$ to their right, so solutions that start near these fixed points are moving away from them. Thus $y=0$ and $y=3$ are unstable. The opposite is true of $y=1$ and $y=6$, so they are (asymptotically) stable.
If $y(0)=2$ then y falls between the stable fixed point at $y=1$ and the unstable fixed point at $y=3$. Thus $\lim _{t \rightarrow \infty} y=1$.
If $y(0)=4$ then y falls between the unstable fixed point at $y=3$ and the stable fixed point at $y=6$. Thus $\lim _{t \rightarrow \infty} y=6$.
[4] 3. (a) The characteristic equation is

$$
9 r^{2}-4=0 \quad \Longrightarrow \quad r^{2}=\frac{4}{9} \quad \Longrightarrow \quad r= \pm \frac{2}{3}
$$

Hence the general solution is

$$
y=C_{1} e^{\frac{2}{3} t}+C_{2} e^{-\frac{2}{3} t}
$$

[4] (b) The characteristic equation is

$$
r^{2}-8 r+16=0 \quad \Longrightarrow \quad(r-4)^{2}=0 \quad \Longrightarrow \quad r=4
$$

Since this is a double root, the general solution is

$$
y=C_{1} e^{4 t}+C_{2} t e^{4 t}
$$

[4] 4. If $y=3 \cos (7 t)$ is a solution then so too is any multiple of $\cos (7 t)$. Hence the roots of the characteristic equation must have the form $r=\lambda \pm i \mu$ for $\lambda=0$ and $\mu=7$. Thus $r= \pm 7 i$ and so the characteristic equation must be

$$
(r-7 i)(r+7 i)=0 \quad \Longrightarrow \quad r^{2}-49 i^{2}=0 \quad \Longrightarrow \quad r^{2}+49=0 .
$$

This corresponds to the equation

$$
\frac{d^{2} y}{d t^{2}}+49 y=0
$$

[9] 5. (a) We assume that $y=v(t) t^{3}$. Then

$$
\frac{d y}{d t}=\frac{d v}{d t} t^{3}+3 v(t) t^{2} \quad \text { and } \quad \frac{d^{2} y}{d t^{2}}=\frac{d^{2} v}{d t^{2}} t^{3}+6 \frac{d v}{d t} t^{2}+6 v(t) t
$$

Substituting this into the equation, we obtain

$$
\begin{aligned}
t^{2}\left[\frac{d^{2} v}{d t^{2}} t^{3}+6 \frac{d v}{d t} t^{2}+6 v(t) t\right]-6 v(t) t^{3} & =0 \\
\frac{d^{2} v}{d t^{2}} t^{5}+6 \frac{d v}{d t} t^{4} & =0 \\
\frac{d^{2} v}{d t^{2}} t+6 \frac{d v}{d t} & =0
\end{aligned}
$$

Let $u=\frac{d v}{d t}$ so $\frac{d u}{d t}=\frac{d^{2} v}{d t^{2}}$. Then we have

$$
\begin{aligned}
\frac{d u}{d t} t+6 u & =0 \\
\int \frac{1}{u} d u & =-6 \int \frac{1}{t} d t \\
\ln (u) & =-6 \ln (t)+C_{2} \\
u & =C_{2} t^{-6} \\
\frac{d v}{d t} & =C_{2} t^{-6} \\
v(t) & =C_{2} \int t^{-6} d t \\
& =C_{2} t^{-5}+C_{1} .
\end{aligned}
$$

This means that the general solution is

$$
y=\left[C_{2} t^{-5}+C_{1}\right] t^{3}=C_{1} t^{3}+C_{2} t^{-2}
$$

and so a distinct second solution is $y_{2}=t^{-2}$.
[3] (b) The Wronskian is given by

$$
\begin{aligned}
W(t) & =y_{1} \frac{d y_{2}}{d t}-y_{2} \frac{d y_{1}}{d t} \\
& =t^{3}\left(-2 t^{-3}\right)-t^{-2}\left(3 t^{2}\right) \\
& =-2-3 \\
& =-5,
\end{aligned}
$$

which is not identically zero. Hence $\left\{t^{3}, t^{-2}\right\}$ forms a fundamental set of solutions to the equation.

