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SOLUTIONS

[10] 1. We have
M(t, y) = 5ty + 4y2 and N(t, y) = t2 + 2ty

so
∂M

∂y
= 5t+ 8y and

∂N

∂t
= 2t+ 2y.

Since ∂M
∂y
6= ∂N

∂t
, the equation is not exact.

However, note that

1

N

(
∂M

∂y
− ∂N

∂t

)
=

3t+ 6y

t2 + 2ty
=

3(t+ 2y)

t(t+ 2y)
=

3

t
,

which is a function of t only. Hence an appropriate integrating factor is

µ = e
∫

3
t
dt = e3 ln(t) = t3.

Multiplying through by the integrating factor, the ODE becomes

(5t4y + 4t3y2) + (t5 + 2t4y)
dy

dt
= 0

so
M∗(t, y) = 5t4y + 4t3y2 and N∗(t, y) = t5 + 2t4y.

Now
∂M∗

∂y
= 5t4 + 8t3y =

∂N∗

∂t
,

so the equation has been made exact. Thus there exists a function ψ(t, y) such that

∂ψ

∂t
= 5t4y + 4t3y2 and

∂ψ

∂y
= t5 + 2t4y.

This means that

ψ(t, y) =

∫
(5t4y + 4t3y2) dt

= t5y + t4y2 + C(y)

∂ψ

∂y
= t5 + 2t4y + C ′(y) = t5 + 2t4y

C ′(y) = 0

C(y) = C.

Finally, the general solution must be ψ(t, y) = C, that is,

t5y + t4y2 = C.
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[30] 2. (a) This equation is separable. It can be written

(t2 − 3t+ 2)
dy

dt
= ty∫

1

y
dy =

∫
t

t2 − 3t+ 2
dt.

To evaluate the integral on the right, we use partial fractions:

t

t2 − 3t+ 2
=

t

(t− 2)(t− 1)
=

A

t− 2
+

B

t− 1

t = A(t− 1) +B(t− 2).

When t = 2 we have 2 = A(1) so A = 2. When t = 1 we have 1 = B(−1) so B = −1.
Thus ∫

1

y
dy =

∫ (
2

t− 2
− 1

t− 1

)
dt

ln(y) = 2 ln(t− 2)− ln(t− 1) + ln(C)

= ln

(
C(t− 2)2

t− 1

)
y =

C(t− 2)2

t− 1
.

Finally, since y(3) = 8 we have

y(3) =
C

2
= 8 =⇒ C = 16.

Thus the particular solution is

y =
16(t− 2)2

t− 1
.

(b) This equation is linear (but not separable) so we first rewrite it as

dy

dt
− 3

t
y = t4 cos(t).

Hence p(t) = −3

t
and therefore an appropriate integrating factor is

µ = e−3
∫

1
t
dt = e−3 ln(t) = t−3.
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Multiplying through by t−3 we obtain

t−3
dy

dt
− 3t−4y = t cos(t)

d

dt
[t−3y] = t cos(t)

t−3y =

∫
t cos(t) dt

= t sin(t) + cos(t) + C

y = t4 sin(t) + t3 cos(t) + Ct3.

Note that the integral on the right can be evaluated using integration by parts.

Alternatively, we can rewrite the given equation as

−3y − t5 cos(t) + t
dy

dt
= 0,

for which
M(t, y) = −3y − t5 cos(t) and N(t, y) = t.

Then
∂M

∂y
= −3 and

∂N

∂t
= 1

and since
∂M

∂y
6= ∂N

∂t
we know that the equation is not exact. However,

1

N

(
∂M

∂y
− ∂N

∂t

)
= −4

t

and so an appropriate integrating factor is

µ = e−4
∫

1
t
dt = e−4 ln(t) = t−4.

Multiplying through by µ, the equation becomes

−3t−4y = t cos(t) + t−3
dy

dt
= 0,

which can be verified to be exact. Hence

ψ(t, y) =

∫
t−3 dy = t−3y + C(t)

and so

∂ψ

∂t
= −3t−4y + C ′(t) = −3t−4y − t cos(t)

C ′(t) = −t cos(t)

C(t) = −
∫
t cos(t) dt

= −t sin(t)− cos(t) + C
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via integration by parts. Hence the solution is ψ(t, y) = C, that is,

t−3y − t sin(t)− cos(t) = C.

Since the equation was linear, we must solve for y and conclude that

y = t4 sin(t) + t3 cos(t) + Ct3.

(c) We can rewrite this equation as

dy

dt
=
t2 + ty + y2

t2
.

If we let f(t, y) =
t2 + ty + y2

t2
then, for any constant k,

f(kt, ky) =
(kt)2 + (kt)(ky) + (ky)2

(kt)2

=
k2t2 + k2ty + k2y2

k2t2

=
k2(t2 + ty + y2

k2t2

=
t2 + ty + y2

t2

= f(t, y)

and so this equation is homogeneous.

Now we let y = vt so
dy

dt
=
dv

dt
t+ v. The equation becomes

dv

dt
t+ v =

t2 + vt2 + v2t2

t2

= 1 + v + v2

dv

dt
t = 1 + v2∫

1

1 + v2
dv =

∫
1

t
dt

arctan(v) = ln(t) + C

arctan
(y
t

)
= ln(t) + C.

Although the equation is non-linear, it is straightforward to solve for y, and thus the
solution is

y = t tan(ln(t) + C).
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(d) This is a Bernoulli equation with n = 3, so we first rewrite the ODE as

y−3
dy

dt
+

1√
t
y−2 =

1√
t
.

Now we let v = y−2 so −1

2

dv

dt
= y−3

dy

dt
. The equation becomes

−1

2

dv

dt
+

1√
t
v =

1√
t

dv

dt
− 2√

t
v = − 2√

t
.

Since this is a linear equation with p(t) = − 2√
t

an appropriate integrating factor is

µ = e
−2

∫
1√
t
dt

= e−4
√
t.

Multiplying the equation through by µ yields

e−4
√
tdv

dt
− 2√

t
e−4
√
tv = − 2√

t
e−4
√
t

d

dt

[
e−4
√
tv
]

= − 2√
t
e−4
√
t

e−4
√
tv = −2

∫
1√
t
e−4
√
t dt.

In order to evaluate the integral on the right we let u =
√
t so du = − 2√

t
dt. Now we

have

e−4
√
tv =

∫
eu du

= eu + C

= e−4
√
t + C

v = 1 + Ce4
√
t

y−2 = 1 + Ce4
√
t.

Alternatively, we could use the fact that this equation is separable since it can be written

dy

dt
=
y3 − y√

t∫
1

y3 − y
dy =

∫
1√
t
dt.
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The integral on the left requires partial fractions, for which we have

1

y3 − y
=

1

y(y − 1)(y + 1)
=
A

y
+

B

y − 1
+

C

y + 1

1 = A(y − 1)(y + 1) +By(y + 1) + Cy(y − 1).

When y = 0 we have 1 = A(−1) so A = −1. When y = 1 we have 1 = B(2) so B = 1
2
.

When y = −1 we have 1 = C(2) so C = 1
2

as well. Thus we obtain∫ [
−1

y
+

1
2

y − 1
+

1
2

y + 1

]
dy =

∫
1√
t
dt

− ln(y) +
1

2
ln(y − 1) +

1

2
ln(y + 1) = 2

√
t+ C

ln

(√
(y − 1)(y + 1)

y

)
= 2
√
t+ C

√
y2 − 1

y
= Ce2

√
t.

These solutions may not appear to be equivalent, but note that we can further rewrite
the latter solution by squaring both sides to get

y2 − 1

y2
= Ce4

√
t

y2 − 1 = Ce4
√
ty2

y2 + Ce4
√
ty2 = 1

1 + Ce4
√
t = y−2,

as before.


