MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

Test 1
MATH 2260

SOLUTIONS

[10] 1. We have

$$
M(t, y)=5 t y+4 y^{2} \quad \text { and } \quad N(t, y)=t^{2}+2 t y
$$

so

$$
\frac{\partial M}{\partial y}=5 t+8 y \quad \text { and } \quad \frac{\partial N}{\partial t}=2 t+2 y
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t}$, the equation is not exact.
However, note that

$$
\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right)=\frac{3 t+6 y}{t^{2}+2 t y}=\frac{3(t+2 y)}{t(t+2 y)}=\frac{3}{t}
$$

which is a function of t only. Hence an appropriate integrating factor is

$$
\mu=e^{\int \frac{3}{t} d t}=e^{3 \ln (t)}=t^{3}
$$

Multiplying through by the integrating factor, the ODE becomes

$$
\left(5 t^{4} y+4 t^{3} y^{2}\right)+\left(t^{5}+2 t^{4} y\right) \frac{d y}{d t}=0
$$

so

$$
M^{*}(t, y)=5 t^{4} y+4 t^{3} y^{2} \quad \text { and } \quad N^{*}(t, y)=t^{5}+2 t^{4} y
$$

Now

$$
\frac{\partial M^{*}}{\partial y}=5 t^{4}+8 t^{3} y=\frac{\partial N^{*}}{\partial t}
$$

so the equation has been made exact. Thus there exists a function $\psi(t, y)$ such that

$$
\frac{\partial \psi}{\partial t}=5 t^{4} y+4 t^{3} y^{2} \quad \text { and } \quad \frac{\partial \psi}{\partial y}=t^{5}+2 t^{4} y .
$$

This means that

$$
\begin{aligned}
\psi(t, y) & =\int\left(5 t^{4} y+4 t^{3} y^{2}\right) d t \\
& =t^{5} y+t^{4} y^{2}+C(y) \\
\frac{\partial \psi}{\partial y}=t^{5}+2 t^{4} y+C^{\prime}(y) & =t^{5}+2 t^{4} y \\
C^{\prime}(y) & =0 \\
C(y)=C &
\end{aligned}
$$

Finally, the general solution must be $\psi(t, y)=C$, that is,

$$
t^{5} y+t^{4} y^{2}=C
$$

[30] 2. (a) This equation is separable. It can be written

$$
\begin{aligned}
\left(t^{2}-3 t+2\right) \frac{d y}{d t} & =t y \\
\int \frac{1}{y} d y & =\int \frac{t}{t^{2}-3 t+2} d t
\end{aligned}
$$

To evaluate the integral on the right, we use partial fractions:

$$
\begin{aligned}
\frac{t}{t^{2}-3 t+2}=\frac{t}{(t-2)(t-1)} & =\frac{A}{t-2}+\frac{B}{t-1} \\
t & =A(t-1)+B(t-2)
\end{aligned}
$$

When $t=2$ we have $2=A(1)$ so $A=2$. When $t=1$ we have $1=B(-1)$ so $B=-1$. Thus

$$
\begin{aligned}
\int \frac{1}{y} d y & =\int\left(\frac{2}{t-2}-\frac{1}{t-1}\right) d t \\
\ln (y) & =2 \ln (t-2)-\ln (t-1)+\ln (C) \\
& =\ln \left(\frac{C(t-2)^{2}}{t-1}\right) \\
y & =\frac{C(t-2)^{2}}{t-1} .
\end{aligned}
$$

Finally, since $y(3)=8$ we have

$$
y(3)=\frac{C}{2}=8 \quad \Longrightarrow \quad C=16
$$

Thus the particular solution is

$$
y=\frac{16(t-2)^{2}}{t-1}
$$

(b) This equation is linear (but not separable) so we first rewrite it as

$$
\frac{d y}{d t}-\frac{3}{t} y=t^{4} \cos (t)
$$

Hence $p(t)=-\frac{3}{t}$ and therefore an appropriate integrating factor is

$$
\mu=e^{-3 \int \frac{1}{t} d t}=e^{-3 \ln (t)}=t^{-3} .
$$

Multiplying through by t^{-3} we obtain

$$
\begin{aligned}
t^{-3} \frac{d y}{d t}-3 t^{-4} y & =t \cos (t) \\
\frac{d}{d t}\left[t^{-3} y\right] & =t \cos (t) \\
t^{-3} y & =\int t \cos (t) d t \\
& =t \sin (t)+\cos (t)+C \\
y & =t^{4} \sin (t)+t^{3} \cos (t)+C t^{3}
\end{aligned}
$$

Note that the integral on the right can be evaluated using integration by parts. Alternatively, we can rewrite the given equation as

$$
-3 y-t^{5} \cos (t)+t \frac{d y}{d t}=0
$$

for which

$$
M(t, y)=-3 y-t^{5} \cos (t) \quad \text { and } \quad N(t, y)=t
$$

Then

$$
\frac{\partial M}{\partial y}=-3 \quad \text { and } \quad \frac{\partial N}{\partial t}=1
$$

and since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t}$ we know that the equation is not exact. However,

$$
\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right)=-\frac{4}{t}
$$

and so an appropriate integrating factor is

$$
\mu=e^{-4 \int \frac{1}{t} d t}=e^{-4 \ln (t)}=t^{-4}
$$

Multiplying through by μ, the equation becomes

$$
-3 t^{-4} y=t \cos (t)+t^{-3} \frac{d y}{d t}=0
$$

which can be verified to be exact. Hence

$$
\psi(t, y)=\int t^{-3} d y=t^{-3} y+C(t)
$$

and so

$$
\begin{aligned}
\frac{\partial \psi}{\partial t}=-3 t^{-4} y+C^{\prime}(t) & =-3 t^{-4} y-t \cos (t) \\
C^{\prime}(t) & =-t \cos (t) \\
C(t) & =-\int t \cos (t) d t \\
& =-t \sin (t)-\cos (t)+C
\end{aligned}
$$

via integration by parts. Hence the solution is $\psi(t, y)=C$, that is,

$$
t^{-3} y-t \sin (t)-\cos (t)=C
$$

Since the equation was linear, we must solve for y and conclude that

$$
y=t^{4} \sin (t)+t^{3} \cos (t)+C t^{3} .
$$

(c) We can rewrite this equation as

$$
\frac{d y}{d t}=\frac{t^{2}+t y+y^{2}}{t^{2}}
$$

If we let $f(t, y)=\frac{t^{2}+t y+y^{2}}{t^{2}}$ then, for any constant k,

$$
\begin{aligned}
f(k t, k y) & =\frac{(k t)^{2}+(k t)(k y)+(k y)^{2}}{(k t)^{2}} \\
& =\frac{k^{2} t^{2}+k^{2} t y+k^{2} y^{2}}{k^{2} t^{2}} \\
& =\frac{k^{2}\left(t^{2}+t y+y^{2}\right.}{k^{2} t^{2}} \\
& =\frac{t^{2}+t y+y^{2}}{t^{2}} \\
& =f(t, y)
\end{aligned}
$$

and so this equation is homogeneous.
Now we let $y=v t$ so $\frac{d y}{d t}=\frac{d v}{d t} t+v$. The equation becomes

$$
\begin{aligned}
\frac{d v}{d t} t+v & =\frac{t^{2}+v t^{2}+v^{2} t^{2}}{t^{2}} \\
& =1+v+v^{2} \\
\frac{d v}{d t} t & =1+v^{2} \\
\int \frac{1}{1+v^{2}} d v & =\int \frac{1}{t} d t \\
\arctan (v) & =\ln (t)+C \\
\arctan \left(\frac{y}{t}\right) & =\ln (t)+C
\end{aligned}
$$

Although the equation is non-linear, it is straightforward to solve for y, and thus the solution is

$$
y=t \tan (\ln (t)+C)
$$

(d) This is a Bernoulli equation with $n=3$, so we first rewrite the ODE as

$$
y^{-3} \frac{d y}{d t}+\frac{1}{\sqrt{t}} y^{-2}=\frac{1}{\sqrt{t}}
$$

Now we let $v=y^{-2}$ so $-\frac{1}{2} \frac{d v}{d t}=y^{-3} \frac{d y}{d t}$. The equation becomes

$$
\begin{aligned}
-\frac{1}{2} \frac{d v}{d t}+\frac{1}{\sqrt{t}} v & =\frac{1}{\sqrt{t}} \\
\frac{d v}{d t}-\frac{2}{\sqrt{t}} v & =-\frac{2}{\sqrt{t}}
\end{aligned}
$$

Since this is a linear equation with $p(t)=-\frac{2}{\sqrt{t}}$ an appropriate integrating factor is

$$
\mu=e^{-2 \int \frac{1}{\sqrt{t}} d t}=e^{-4 \sqrt{t}}
$$

Multiplying the equation through by μ yields

$$
\begin{aligned}
e^{-4 \sqrt{t}} \frac{d v}{d t}-\frac{2}{\sqrt{t}} e^{-4 \sqrt{t}} v & =-\frac{2}{\sqrt{t}} e^{-4 \sqrt{t}} \\
\frac{d}{d t}\left[e^{-4 \sqrt{t}} v\right] & =-\frac{2}{\sqrt{t}} e^{-4 \sqrt{t}} \\
e^{-4 \sqrt{t}} v & =-2 \int \frac{1}{\sqrt{t}} e^{-4 \sqrt{t}} d t
\end{aligned}
$$

In order to evaluate the integral on the right we let $u=\sqrt{t}$ so $d u=-\frac{2}{\sqrt{t}} d t$. Now we have

$$
\begin{aligned}
e^{-4 \sqrt{t}} v & =\int e^{u} d u \\
& =e^{u}+C \\
& =e^{-4 \sqrt{t}}+C \\
v & =1+C e^{4 \sqrt{t}} \\
y^{-2} & =1+C e^{4 \sqrt{t}}
\end{aligned}
$$

Alternatively, we could use the fact that this equation is separable since it can be written

$$
\begin{aligned}
\frac{d y}{d t} & =\frac{y^{3}-y}{\sqrt{t}} \\
\int \frac{1}{y^{3}-y} d y & =\int \frac{1}{\sqrt{t}} d t
\end{aligned}
$$

The integral on the left requires partial fractions, for which we have

$$
\begin{aligned}
\frac{1}{y^{3}-y}=\frac{1}{y(y-1)(y+1)} & =\frac{A}{y}+\frac{B}{y-1}+\frac{C}{y+1} \\
1 & =A(y-1)(y+1)+B y(y+1)+C y(y-1)
\end{aligned}
$$

When $y=0$ we have $1=A(-1)$ so $A=-1$. When $y=1$ we have $1=B(2)$ so $B=\frac{1}{2}$. When $y=-1$ we have $1=C(2)$ so $C=\frac{1}{2}$ as well. Thus we obtain

$$
\begin{aligned}
\int\left[-\frac{1}{y}+\frac{\frac{1}{2}}{y-1}+\frac{\frac{1}{2}}{y+1}\right] d y & =\int \frac{1}{\sqrt{t}} d t \\
-\ln (y)+\frac{1}{2} \ln (y-1)+\frac{1}{2} \ln (y+1) & =2 \sqrt{t}+C \\
\ln \left(\frac{\sqrt{(y-1)(y+1)}}{y}\right) & =2 \sqrt{t}+C \\
\frac{\sqrt{y^{2}-1}}{y} & =C e^{2 \sqrt{t}}
\end{aligned}
$$

These solutions may not appear to be equivalent, but note that we can further rewrite the latter solution by squaring both sides to get

$$
\begin{aligned}
\frac{y^{2}-1}{y^{2}} & =C e^{4 \sqrt{t}} \\
y^{2}-1 & =C e^{4 \sqrt{t}} y^{2} \\
y^{2}+C e^{4 \sqrt{t}} y^{2} & =1 \\
1+C e^{4 \sqrt{t}} & =y^{-2},
\end{aligned}
$$

as before.

