MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

Assignment 6

Due: Wednesday, July 24th, 2019 at 1:00pm. SHOW ALL WORK.

1. Solve each of the following higher-order equations.
(a) $\frac{d^{4} y}{d t^{4}}+4 \frac{d^{3} y}{d t^{3}}+13 \frac{d^{2} y}{d t^{2}}+36 \frac{d y}{d t}+36 y=0$
(b) $4 \frac{d^{4} y}{d t^{4}}-13 \frac{d^{3} y}{d t^{3}}+15 \frac{d^{2} y}{d t^{2}}-7 \frac{d y}{d t}+y=0$
(c) $\frac{d^{3} y}{d t^{3}}+\frac{d^{2} y}{d t^{2}}-6 \frac{d y}{d t}=0, \quad y(0)=0, \quad y^{\prime}(0)=9, \quad y^{\prime \prime}(0)=33$
2. Use the method of undetermined coefficients to find the general solution of each of the following equations. (Note that each of the corresponding homogeneous equations was solved on Assignment 5; you do not have to derive those results again.)
(a) $\frac{d^{2} y}{d t^{2}}-8 \frac{d y}{d t}+15 y=5 \sin (5 t)$
(b) $\frac{d^{2} y}{d t^{2}}+8 \frac{d y}{d t}+16 y=64 t^{3}$
(c) $\frac{d^{2} y}{d t^{2}}-2 \frac{d y}{d t}+5 y=16 t e^{-t}$
(d) $9 \frac{d^{2} y}{d t^{2}}+y=\sin \left(\frac{t}{3}\right)$
(e) $4 \frac{d^{2} y}{d t^{2}}-28 \frac{d y}{d t}+49 y=e^{\frac{7 t}{2}}$
3. Use the method of undetermined coefficients to solve the equation

$$
\frac{d^{4} y}{d t^{4}}+4 \frac{d^{3} y}{d t^{3}}-5 \frac{d^{2} y}{d t^{2}}=18 e^{t}-10
$$

