MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

Due: Wednesday, July 10th, 2019 at 1:00pm. SHOW ALL WORK.

1. Solve each of the following second-order equations.
(a) $9 \frac{d^{2} y}{d t^{2}}+y=0$
(b) $\frac{d^{2} y}{d t^{2}}-2 \frac{d y}{d t}+5 y=0$
(c) $\frac{d^{2} y}{d t^{2}}-8 \frac{d y}{d t}+15 y=0$
(d) $\frac{d^{2} y}{d t^{2}}+8 \frac{d y}{d t}+16 y=0$
(e) $2 \frac{d^{2} y}{d t^{2}}+11 \frac{d y}{d t}+12 y=0$
2. Solve each of the following initial value problems.
(a) $\frac{d^{2} y}{d t^{2}}+10 \frac{d y}{d t}+34 y=0, \quad y(0)=y^{\prime}(0)=2$
(b) $4 \frac{d^{2} y}{d t^{2}}-28 \frac{d y}{d t}+49 y=0, \quad y(0)=0, \quad y^{\prime}(0)=-4$
3. For each of the following pairs of functions, use the Wronskian to determine if they represent a fundamental set of solutions for some second order differential equation.
(a) $y_{1}=\ln (t), \quad y_{2}=\ln \left(t^{2}\right)$
(b) $y_{1}=\sin (t), \quad y_{2}=\sin (2 t)$
4. Given that y_{1} is a solution of the given equation, use the method of reduction of order to find a second solution y_{2} such that y_{1} and y_{2} form a fundamental set of solutions. Use the Wronskian to verify that this is the case.
(a) $3 t^{2} \frac{d^{2} y}{d t^{2}}-t \frac{d y}{d t}-4 y=0, \quad y_{1}=t^{2}$
(b) $t^{2} \frac{d^{2} y}{d t^{2}}+3 t \frac{d y}{d t}+y=0, \quad y_{1}=\frac{1}{t}$
(c) $2 t^{2} \frac{d^{2} y}{d t^{2}}+5 t \frac{d y}{d t}-2 y=0, \quad y_{1}=\sqrt{t}$
