MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

Assignment 2

MATH 2260
Spring 2019

Due: Wednesday, May 29th, 2019 at 1:00pm. SHOW ALL WORK.

1. For each of the following, state the order of the differential equation and whether it is linear or nonlinear.
(a) $t^{2} \frac{d^{3} y}{d t^{3}}-3 \frac{d y}{d t}+\frac{y}{t^{2}}=0$
(b) $y^{2} \frac{d^{3} y}{d t^{3}}-3 \frac{d y}{d t}+\frac{y}{t^{2}}=0$
(c) $\frac{d^{2} y}{d t^{2}}-\sec (y)=0$
(d) $\frac{d y}{d t}-\sqrt{t} \frac{d^{4} y}{d t^{4}}=\sin (t)-2$
2. Determine which of the following is a solution of

$$
t^{2} \frac{d^{2} y}{d t^{2}}-t \frac{d y}{d t}+y=0
$$

by substituting directly into the differential equation.
(a) $y=t$
(b) $y=\ln (t)$
(c) $y=t \ln (t)$
3. Use the method of integrating factors to solve each of the following equations. When appropriate, you may assume that t is defined such that the argument of any logarithm that arises is positive.
(a) $\frac{d y}{d t}-\frac{4}{t} y=6 t$
(b) $\frac{d y}{d t}+5 y=e^{-2 t}$
(c) $\tan (t) \frac{d y}{d t}+y=\tan (t)$
(d) $\frac{1}{t^{2}} \frac{d y}{d t}+5 t^{2} y=t^{2}$
(e) $(t-1) \frac{d y}{d t}+t y=1$
4. (a) Find the particular solution of Question 3(a) given the initial condition $y(2)=0$.
(b) Find the particular solution of Question 3(b) given the initial condition $y(0)=\frac{7}{3}$.
(c) Find the particular solution of Question 3(c) given the initial condition $y\left(\frac{\pi}{4}\right)=-1$.

