Please remember that each final exam is different, and the style and emphasis of the questions will vary from semester to semester.

1. Solve each of the following equations.
[4]
] 2. Give the interval of definition of the solution to the initial value problem

$$
(2-t) \frac{d y}{d t}-y=\tan (t), \quad y(3)=0
$$

You do NOT need to solve the equation.
[10] 3. Show that the equation

$$
1-\left(y-\frac{t}{y}\right) \frac{d y}{d t}=0
$$

is not exact. Find an integrating factor which makes it exact, then solve the equation.
[7] 4. Identify the fixed points of the autonomous equation

$$
\frac{d y}{d t}=9 y^{2}-y^{3}-14 y
$$

Determine, with justification, the stability of each fixed point. What is the long-term behaviour of the solution if $y(0)=1$? If $y(0)=2$? If $y(0)=3$?
[4] 5. Show that $y_{1}=t^{2}$ and $y_{2}=t^{-2}$ form a fundamental set of solutions.
[10] 6. Use the method of reduction of order to find the general solution of

$$
t^{2} \frac{d^{2} y}{d t^{2}}+3 t \frac{d y}{d t}+y=0
$$

given that $y=\frac{1}{t}$ is a particular solution.
[3] 7. (a) Solve the homogeneous equation

$$
\frac{d^{2} y}{d t^{2}}+9 y=0
$$

[7] (b) Use the method of undetermined coefficients and your answer to part (a) to find the general solution of

$$
\frac{d^{2} y}{d t^{2}}+9 y=\sin (3 t)
$$

[10] 8. Use the method of variation of parameters to solve

$$
t^{2} \frac{d^{2} y}{d t^{2}}-t \frac{d y}{d t}+y=\ln (t)
$$

given that $y_{1}=t$ and $y_{2}=t \ln (t)$ are solutions of the corresponding homogeneous equation.
[6] 9. Solve the equation

$$
\frac{d^{6} y}{d t^{6}}-5 \frac{d^{5} y}{d t^{5}}+4 \frac{d^{4} y}{d t^{4}}-20 \frac{d^{3} y}{d t^{3}}=0
$$

[4] 10. Use the definition of the Laplace transform to derive $\mathcal{L}\left\{e^{2 t}\right\}$ (for $s>2$).
11. Determine each of the following without directly using the definition of the Laplace transform.
[4] (a) $\mathcal{L}\left\{e^{2 t}(t-2)\right\}$
[4] (b) $\mathcal{L}\left\{u_{2}(t)(t-2)\right\}$
[8] 12. Use the Laplace transform to solve the initial value problem

$$
\frac{d^{2} y}{d t^{2}}+4 y=0, \quad y(0)=3, \quad y^{\prime}(0)=1
$$

[6] 13. An Euler equation is a second-order equation of the form

$$
t^{2} \frac{d^{2} y}{d t^{2}}+A t \frac{d y}{d t}+B y=0
$$

for constants A and B. Show that the substitution $v=\ln (t)$ transforms an Euler equation into an equation with constant coefficients. (Hint: Use the Chain Rule to effect the change of variables.)

