1 My first $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ experience

This is my first document.
This is the second paragraph.
My grocery list includes:

1. milk
2. liquor
3. potato chips

- ketchup
- salt and vinegar

4. vegetables

My hockey pool can be found in Table 1.

Participant's Name	Winner	Loser
Nicole	Toronto	Montreal
Jennifer	Tampa Bay	Edmonton
Amanda	Calgary	Boston

Table 1: Participants in my hockey pool

2 Mathematics

Let's consider the function $f_{\alpha}(x)=\sin \left(\frac{x^{20}}{2 x+1}\right)$ and the function

$$
f_{\beta}(x)=x^{4}-9 x^{3}+5 x^{2}+7 x-2,
$$

which we will investigate further. Most important is the product

$$
\begin{equation*}
P(x)=f_{\alpha}(x) \cdot f_{\beta}(x) \tag{1}
\end{equation*}
$$

We will refer frequently to Equation (1).
Now we need the derivative of $f_{\beta}(x)$:

$$
\begin{align*}
\frac{d}{d x}\left[f_{\beta}(x)\right] & =\frac{d}{d x}\left[x^{4}\right]-\frac{d}{d x}\left[9 x^{3}\right]+\frac{d}{d x}\left[5 x^{2}\right]+\frac{d}{d x}[7 x]-\frac{d}{d x}[2] \\
& =\frac{d}{d x}\left[x^{4}\right]-9 \frac{d}{d x}\left[x^{3}\right]+5 \frac{d}{d x}\left[x^{2}\right]+7 \frac{d}{d x}[x]-\frac{d}{d x}[2] \\
& =4 x^{3}-9 \cdot 3 x^{2}+5 \cdot 2 x+7 \cdot 1-0 \\
& =4 x^{3}-27 x^{2}+10 x+7 . \tag{2}
\end{align*}
$$

Figure 1: The TARDIS from Doctor Who.

