## 1 My first LATEX experience

This is my *first* document.

This is the second paragraph.

My grocery list includes:

- 1. milk
- 2. liquor
- 3. potato chips
  - ketchup
  - salt and vinegar
- 4. vegetables

My hockey pool can be found in Table 1.

| Participant's Name | Winner    | Loser    |
|--------------------|-----------|----------|
| Nicole             | Toronto   | Montreal |
| Jennifer           | Tampa Bay | Edmonton |
| Amanda             | Calgary   | Boston   |

Table 1: Participants in my hockey pool

## 2 Mathematics

Let's consider the function  $f_{\alpha}(x) = \sin\left(\frac{x^{20}}{2x+1}\right)$  and the function  $f_{\beta}(x) = x^4 - 9x^3 + 5x^2 + 7x - 2,$ 

$$P(x) = f_{\alpha}(x) \cdot f_{\beta}(x).$$

(1)

We will refer frequently to Equation (1).

Now we need the derivative of  $f_{\beta}(x)$ :

$$\frac{d}{dx}[f_{\beta}(x)] = \frac{d}{dx}[x^{4}] - \frac{d}{dx}[9x^{3}] + \frac{d}{dx}[5x^{2}] + \frac{d}{dx}[7x] - \frac{d}{dx}[2] 
= \frac{d}{dx}[x^{4}] - 9\frac{d}{dx}[x^{3}] + 5\frac{d}{dx}[x^{2}] + 7\frac{d}{dx}[x] - \frac{d}{dx}[2] 
= 4x^{3} - 9 \cdot 3x^{2} + 5 \cdot 2x + 7 \cdot 1 - 0 
= 4x^{3} - 27x^{2} + 10x + 7.$$
(2)



Figure 1: The TARDIS from *Doctor Who*.