For practise only. Not to be submitted.

1. (a) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a linear transformation for which

$$
T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{c}
3 \\
-1 \\
1
\end{array}\right] \quad \text { and } \quad T\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
4 \\
5 \\
-2
\end{array}\right] .
$$

If $\underline{x}=\left[\begin{array}{l}a \\ b\end{array}\right]$ is any vector in \mathbb{R}^{2}, determine $T(\underline{x})$.
(b) Let $T: \mathbb{R}^{2} \rightarrow P_{2}$ be a linear transformation for which

$$
T\left(\left[\begin{array}{c}
1 \\
-1
\end{array}\right]\right)=1+2 x+3 x^{3} \quad \text { and } \quad T\left(\left[\begin{array}{c}
-2 \\
3
\end{array}\right]\right)=-2-4 x+7 x^{2}
$$

If $\underline{x}=\left[\begin{array}{l}a \\ b\end{array}\right]$ is any vector in \mathbb{R}^{2}, determine $T(\underline{x})$.
2. (a) For the linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ defined by

$$
T\left(\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]\right)=\left[\begin{array}{l}
a-2 b+c \\
a+5 b-c
\end{array}\right]
$$

find a matrix A such that $T=T_{A}$ (left multiplication by A).
(b) If $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ is a linear transformation such that

$$
T\left(\left[\begin{array}{c}
1 \\
-3
\end{array}\right]\right)=\left[\begin{array}{c}
-1 \\
0 \\
-1
\end{array}\right] \quad \text { and } \quad T\left(\left[\begin{array}{c}
2 \\
-5
\end{array}\right]\right)=\left[\begin{array}{c}
-1 \\
-1 \\
0
\end{array}\right]
$$

find a matrix A such that $T=T_{A}$.
3. Let the linear transformation $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ be defined by

$$
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]\right)=\left[\begin{array}{c}
x_{1}-x_{4} \\
x_{2}-x_{3} \\
x_{1}+x_{2}-x_{3}-x_{4}
\end{array}\right]
$$

Find a matrix A such that $T=T_{A}$. Find a basis for $\operatorname{ker}(T)$ and $\operatorname{im}(T)$, and determine the nullity and the rank of T.
4. Show that if a linear transformation $T: V \rightarrow W$ between vector spaces V and W is one-toone and $\left\{\underline{x}_{1}, \underline{x}_{2}, \ldots, \underline{x}_{n}\right\}$ is a linearly independent set in V then $\left\{T\left(\underline{x}_{1}\right), T\left(\underline{x}_{2}\right), \ldots, T\left(\underline{x}_{n}\right)\right\}$ is a linearly independent set in W.
5. Verify that each of the following linear transformations T is an isomorphism.
(a) $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by

$$
T\left(\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]\right)=\left[\begin{array}{l}
a+b \\
b+c \\
c+a
\end{array}\right]
$$

(b) $T: M_{22} \rightarrow P_{3}$ given by

$$
T\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=(a+b)+d x+c x^{2}+(a-b) x^{3}
$$

6. If $S: P_{2} \rightarrow P_{2}$ and $T: P_{2} \rightarrow P_{2}$ are linear transformations such that

$$
S(p(x))=p(0)+p(1) x+p(2) x^{2} \quad \text { and } \quad T\left(a+b x+c x^{2}\right)=b+c x+a x^{2}
$$

determine $S T(p(x))$ and $T S(p(x))$ for some vector $p(x)$ in P_{2}.
7. Show that if V, W and U are vector spaces, and $T: V \rightarrow W$ and $S: W \rightarrow U$ are one-to-one linear transformations, then $S T$ is also one-to-one.
8. Determine whether the linear transformation $T: M_{22} \rightarrow M_{22}$ given by

$$
T\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=\left[\begin{array}{cc}
a-c & b-d \\
2 a-c & 2 b-d
\end{array}\right]
$$

has an inverse. If so, find $T^{-1}(A)$ for some general matrix $A=\left[\begin{array}{cc}x & y \\ z & w\end{array}\right]$ in M_{22}.

