Name

MUN Number

1. Define each of the following terms clearly and concisely.
[3] (a) the linear independence of a set of vectors $\left\{\underline{x}_{1}, \ldots, \underline{x}_{p}\right\}$
[3] (b) the span of a set of vector $\left\{\underline{x}_{1}, \ldots, \underline{x}_{p}\right\}$
[3] (c) the basis of a subspace U
[3] (d) the null space of a matrix A
[6] 2. If $\{\underline{x}, \underline{y}, \underline{z}\}$ spans a subspace U and \underline{w} is a vector in U, prove that $\{\underline{w}, \underline{x}, \underline{y}, \underline{z}\}$ also spans U.
[10] 3. Determine whether the vectors $\underline{x}_{1}=\left[\begin{array}{c}1 \\ -4 \\ 7\end{array}\right], \underline{x}_{2}=\left[\begin{array}{c}0 \\ 2 \\ -3\end{array}\right]$ and $\underline{x}_{3}=\left[\begin{array}{l}3 \\ 2 \\ 0\end{array}\right]$ are linearly independent. If they are not, express one vector as the linear combination of the others.
[7] 4. Prove that if A is an $m \times n$ matrix then null (A) is a subspace of \mathbb{R}^{n}.
2. Consider the matrix

$$
A=\left[\begin{array}{cccc}
1 & 4 & -3 & -8 \\
0 & -1 & 2 & 4 \\
1 & 1 & 3 & 4
\end{array}\right]
$$

[7] (a) Find bases for the column space and row space of A, and determine $\operatorname{rank}(A)$.
[5] (b) Find a basis for $\operatorname{null}(A)$ and compute $\operatorname{dim}[\operatorname{null}(A)]$.
[3] (c) Briefly explain why your answers to parts (a) and (b) corroborate a theorem given in class. (At least, they should if you did parts (a) and (b) correctly!)

