MEMORIAL UNIVERSITY OF NEWFOUNDLAND

DEPARTMENT OF MATHEMATICS AND STATISTICS

SOLUTIONS

1. (a) We have

$$
\begin{aligned}
\underline{x}=\left[\begin{array}{l}
a \\
b
\end{array}\right] & =a\left[\begin{array}{l}
1 \\
0
\end{array}\right]+b\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
T(\underline{x}) & =a T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)+b T\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right) \\
& =a\left[\begin{array}{c}
3 \\
-1 \\
1
\end{array}\right]+b\left[\begin{array}{c}
4 \\
5 \\
-2
\end{array}\right] \\
& =\left[\begin{array}{c}
3 a+4 b \\
-a+5 b \\
a-2 b
\end{array}\right]
\end{aligned}
$$

(b) First we need to see how to write \underline{x} as a linear combination of the given vectors. We let

$$
\left[\begin{array}{l}
a \\
b
\end{array}\right]=k\left[\begin{array}{c}
1 \\
-1
\end{array}\right]+\ell\left[\begin{array}{c}
-2 \\
3
\end{array}\right]=\left[\begin{array}{c}
k-2 \ell \\
3 \ell-k
\end{array}\right]
$$

so $a=k-2 \ell$ and $b=3 \ell-k$. Adding these gives $\ell=a+b$ and so $k=a+2(a+b)=3 a+2 b$.
Hence

$$
\begin{aligned}
\underline{x}=\left[\begin{array}{l}
a \\
b
\end{array}\right] & =(3 a+2 b)\left[\begin{array}{c}
1 \\
-1
\end{array}\right]+(a+b)\left[\begin{array}{c}
-2 \\
3
\end{array}\right] \\
T(\underline{x}) & =(3 a+2 b) T\left(\left[\begin{array}{c}
1 \\
-1
\end{array}\right]\right)+(a+b) T\left(\left[\begin{array}{c}
-2 \\
3
\end{array}\right]\right) \\
& =(3 a+2 b)\left(1+2 x+3 x^{3}\right)+(a+b)\left(-2-4 x+7 x^{2}\right) \\
& =a+2 a x+7(a+b) x^{2}+3(3 a+2 b) x^{3} .
\end{aligned}
$$

2. (a) Observe that

$$
T\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad T\left(\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{c}
-2 \\
5
\end{array}\right], \quad T\left(\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

so $A=\left[\begin{array}{ccc}1 & -2 & 1 \\ 1 & 5 & -1\end{array}\right]$.
(b) We need to express the standard basis vectors as linear combinations of the given vectors. First we let

$$
\left[\begin{array}{l}
1 \\
0
\end{array}\right]=k\left[\begin{array}{c}
1 \\
-3
\end{array}\right]+\ell\left[\begin{array}{c}
2 \\
-5
\end{array}\right]=\left[\begin{array}{c}
k+2 \ell \\
-3 k-5 \ell
\end{array}\right]
$$

so $k+2 \ell=1$ and $-3 k-5 \ell=0$. The second equation tells us that $\ell=-\frac{3}{5} k$, yielding $-\frac{1}{5} k=1$. Thus $k=-5$ and $\ell=3$. Then

$$
T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=-5 T\left(\left[\begin{array}{c}
1 \\
-3
\end{array}\right]\right)+3 T\left(\left[\begin{array}{c}
2 \\
-5
\end{array}\right]\right)=-5\left[\begin{array}{c}
-1 \\
0 \\
-1
\end{array}\right]+3\left[\begin{array}{c}
-1 \\
-1 \\
0
\end{array}\right]=\left[\begin{array}{c}
2 \\
-3 \\
5
\end{array}\right] .
$$

Next we let

$$
\left[\begin{array}{l}
0 \\
1
\end{array}\right]=k\left[\begin{array}{c}
1 \\
-3
\end{array}\right]+\ell\left[\begin{array}{c}
2 \\
-5
\end{array}\right]=\left[\begin{array}{c}
k+2 \ell \\
-3 k-5 \ell
\end{array}\right]
$$

so $k+2 \ell=0$ and $-3 k-5 \ell=1$. From the first equation we obtain $k=-2 \ell$, so $\ell=1$ and $k=-2$. Hence

$$
T\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=-2 T\left(\left[\begin{array}{c}
1 \\
-3
\end{array}\right]\right)+T\left(\left[\begin{array}{c}
2 \\
-5
\end{array}\right]\right)=-2\left[\begin{array}{c}
-1 \\
0 \\
-1
\end{array}\right]+\left[\begin{array}{c}
-1 \\
-1 \\
0
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right] .
$$

Finally, we see that $A=\left[\begin{array}{cc}2 & 1 \\ -3 & -1 \\ 5 & 2\end{array}\right]$.
3. We have

$$
T\left(\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], \quad T\left(\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right], \quad T\left(\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{c}
0 \\
-1 \\
-1
\end{array}\right], \quad T\left(\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
-1 \\
0 \\
-1
\end{array}\right] .
$$

Hence $A=\left[\begin{array}{cccc}1 & 0 & 0 & -1 \\ 0 & 1 & -1 & 0 \\ 1 & 1 & -1 & -1\end{array}\right]$. Row-reducing A yields

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & -1 \\
0 & 1 & -1 & 0 \\
0 & 1 & -1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 0 & 0 & -1 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

so if $A \underline{x}=\underline{0}$ then $x_{4}=t$ and $x_{3}=s$ are free variables, $x_{2}=s$ and $x_{1}=t$. Hence

$$
\underline{x}=\left[\begin{array}{l}
t \\
s \\
s \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right]+s\left[\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right]
$$

$$
\left\{\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right], \quad\left[\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right]\right\}
$$

is a basis for $\operatorname{ker}(T)$. Also, from the leading 1's in the row-reduced form of A, we see that a basis for $\operatorname{im}(T)$ is

$$
\left\{\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], \quad\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]\right\}
$$

Hence the nullity of T and the rank of T are both 2 .
4. Let

$$
k_{1} T\left(\underline{x}_{1}\right)+k_{2} T\left(\underline{x}_{2}\right)+\cdots+k_{n} T\left(\underline{x}_{n}\right)=\underline{0} .
$$

We wish to prove that $k_{1}=\cdots k_{n}=0$. But by the basic properties of linear transformations, we can rewrite this as

$$
T\left(k_{1} \underline{x}_{1}+k_{2} \underline{x}_{2}+\cdots+k_{n} \underline{x}_{n}\right)=\underline{0},
$$

as because T is one-to-one, we know that $\operatorname{ker}(T)=\{\underline{0}\}$, that is, the only vector which maps to $\underline{0}$ is $\underline{0}$. Hence

$$
k_{1} \underline{x}_{1}+k_{2} \underline{x}_{2}+\cdots+k_{n} \underline{x}_{n}=\underline{0} .
$$

But then, because these vectors are assumed to be linearly independent, we have that $k_{1}=$ $\cdots=k_{n}=0$, as desired.
5. (a) First we check to see if T is one-to-one by determining $\operatorname{ker}(T)$. If $a+b=0$ then $a=-b$. If $b+c=0$ then $b=-c$. If $c+a=0$ then $c=-a$; and hence $b=a$ and so $a=-a$. This implies $a=0$ and therefore $b=c=0$, so $\operatorname{ker}(T)=\{\underline{0}\}$ which means that T is one-to-one.
To see that T is onto, let $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ be any vector in \mathbb{R}^{3}. Let $x=a+b, y=b+c, z=c+a$. Then $b=x-a$ and $c=z-a$ so $y=x+z-2 a$ and $a=\frac{1}{2}(x-y+z)$. This tells us that $x=\frac{1}{2}(x-y+z)+b$ so $b=\frac{1}{2}(x+y-z)$, and $z=c+\frac{1}{2}(x-y+z)$ so $c=\frac{1}{2}(-x+y+z)$. In other words,

$$
T\left(\left[\begin{array}{c}
\frac{1}{2}(x-y+z) \\
\frac{1}{2}(x+y-z) \\
\frac{1}{2}(-x+y+z)
\end{array}\right]\right)=\left[\begin{array}{c}
x \\
y \\
z
\end{array}\right]
$$

for any x, y, z, and so T is onto. Hence T is an isomorphism.
(b) Recall that the zero vector in P_{3} is the polynomial with only zero coefficients. Then $a+b=0, d=0, c=0$ and $a-b=0$. The first and fourth equations tells us that $a=b=0$ as well, so $\operatorname{ker}(T)=\{\underline{0}\}$ and thus T is one-to-one.
Let $k_{0}+k_{1} x+k_{2} x^{2}+k_{3} x^{3}$ be any vector in P_{3}. Then we set $a+b=k_{0}, d=k_{1}, c=k_{2}$ and $a-b=k_{3}$. Adding the first and fourth equations yields $a=\frac{1}{2}\left(k_{0}+k_{3}\right)$ while substracting
them tells us that $b=\frac{1}{2}\left(k_{0}=k_{3}\right)$. Hence

$$
T\left(\left[\begin{array}{cc}
\frac{1}{2}\left(k_{0}+k_{3}\right) & \frac{1}{2}\left(k_{0}-k_{3}\right) \\
k_{2} & k_{1}
\end{array}\right]\right)=k_{0}+k_{1} x+k_{2} x^{2}+k_{3} x^{3}
$$

for any coefficients $k_{0}, k_{1}, k_{2}, k_{3}$, and thus T is onto. We can now conclude that it is an isomorphism.
6. If $p(x)=k_{0}+k_{1} x+k_{2} x^{2}$ then

$$
S T(p(x))=S\left(k_{1}+k_{2} x+k_{0} x^{2}\right)=k_{1}+\left(k_{0}+k_{1}+k_{2}\right) x+\left(4 k_{0}+k_{1}+2 k_{2}\right) x^{2}
$$

and

$$
T S(p(x))=T\left(k_{0}+\left(k_{0}+k_{1}+k_{2}\right) x+\left(k_{0}+2 k_{1}+4 k_{2}\right) x^{2}\right)=\left(k_{0}+k_{1}+k_{2}\right)+\left(k_{0}+2 k_{1}+4 k_{2}\right) x+k_{0} x^{2} .
$$

7. Since S is one-to-one, the only vector mapped to $\underline{0}$ (in U) is $\underline{0}$ (in W). But since T is one-to-one, the only vector mapped to $\underline{0}$ (in W) is $\underline{0}$ (in V). Thus the only vector that $S T$ maps to $\underline{0}$ (in U) is $\underline{0}$ (in V), that is, $\operatorname{ker}(S T)=\{\underline{0}\}$. Hence $S T$ is one-to-one.
8. To show that T is invertible, we must show that it is an isomorphism. If T maps to the zero vector then we have $a-c=0, b-d=0,2 a-c=0$ and $2 b-d=0$. The first and third equations tell us that $a=2 a$ and so $a=c=0$. Similarly, the second and fourth equations tell us that $b=d=0$. Thus $\operatorname{ker}(T)=\{\underline{0}\}$ and so T is one-to-one.
Next, let $\left[\begin{array}{cc}x & y \\ z & w\end{array}\right]$ be any vector in M_{22}. Then we set $a-c=x, b-d=y, 2 a-c=z$, $2 b-d=w$. Subtracting the first equation from the third equation, we see that $a=z-x$ and so $c=z-2 x$. Subtracting the second equation from the fourth equation, we see that $b=w-y$ and so $d=w-2 y$. Hence

$$
T\left(\left[\begin{array}{cc}
z-x & w-y \\
z-2 x & w-2 y
\end{array}\right]\right)=\left[\begin{array}{cc}
x & y \\
z & w
\end{array}\right]
$$

for any x, y, z, w. Thus T is onto and therefore is an isomorphism. This also tells us that

$$
T^{-1}\left(\left[\begin{array}{cc}
x & y \\
z & w
\end{array}\right]\right)=\left[\begin{array}{cc}
z-x & w-y \\
z-2 x & w-2 y
\end{array}\right] .
$$

