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SOLUTIONS

1. (a) We have

x =

[
a
b

]
= a

[
1
0

]
+ b

[
0
1

]
T (x) = aT

([
1
0

])
+ bT

([
0
1

])

= a

 3
−1
1

 + b

 4
5
−2


=

3a + 4b
−a + 5b
a− 2b

 .

(b) First we need to see how to write x as a linear combination of the given vectors. We let[
a
b

]
= k

[
1
−1

]
+ `

[
−2
3

]
=

[
k − 2`
3`− k

]
so a = k−2` and b = 3`−k. Adding these gives ` = a+b and so k = a+2(a+b) = 3a+2b.
Hence

x =

[
a
b

]
= (3a + 2b)

[
1
−1

]
+ (a + b)

[
−2
3

]
T (x) = (3a + 2b)T

([
1
−1

])
+ (a + b)T

([
−2
3

])
= (3a + 2b)(1 + 2x + 3x3) + (a + b)(−2− 4x + 7x2)

= a + 2ax + 7(a + b)x2 + 3(3a + 2b)x3.

2. (a) Observe that

T

1
0
0

 =

[
1
1

]
, T

0
1
0

 =

[
−2
5

]
, T

0
0
1

 =

[
1
−1

]

so A =

[
1 −2 1
1 5 −1

]
.



(b) We need to express the standard basis vectors as linear combinations of the given vectors.
First we let [

1
0

]
= k

[
1
−3

]
+ `

[
2
−5

]
=

[
k + 2`

−3k − 5`

]
so k + 2` = 1 and −3k − 5` = 0. The second equation tells us that ` = −3

5
k, yielding

−1
5
k = 1. Thus k = −5 and ` = 3. Then

T

([
1
0

])
= −5T

([
1
−3

])
+ 3T

([
2
−5

])
= −5

−1
0
−1

 + 3

−1
−1
0

 =

 2
−3
5

 .

Next we let [
0
1

]
= k

[
1
−3

]
+ `

[
2
−5

]
=

[
k + 2`

−3k − 5`

]
so k + 2` = 0 and −3k − 5` = 1. From the first equation we obtain k = −2`, so ` = 1
and k = −2. Hence

T

([
0
1

])
= −2T

([
1
−3

])
+ T

([
2
−5

])
= −2

−1
0
−1

 +

−1
−1
0

 =

 1
−1
2

 .

Finally, we see that A =

 2 1
−3 −1
5 2

.

3. We have

T




1
0
0
0


 =

1
0
1

 , T




0
1
0
0


 =

0
1
1

 , T




0
0
1
0


 =

 0
−1
−1

 , T




0
0
0
1


 =

−1
0
−1

 .

Hence A =

1 0 0 −1
0 1 −1 0
1 1 −1 −1

. Row-reducing A yields

1 0 0 −1
0 1 −1 0
0 1 −1 0

 →

1 0 0 −1
0 1 −1 0
0 0 0 0


so if Ax = 0 then x4 = t and x3 = s are free variables, x2 = s and x1 = t. Hence

x =


t
s
s
t

 = t


1
0
0
1

 + s


0
1
1
0





so 


1
0
0
1

 ,


0
1
1
0




is a basis for ker(T ). Also, from the leading 1’s in the row-reduced form of A, we see that a
basis for im(T ) is 

1
0
1

 ,

0
1
1

 .

Hence the nullity of T and the rank of T are both 2.

4. Let
k1T (x1) + k2T (x2) + · · ·+ knT (xn) = 0.

We wish to prove that k1 = · · · kn = 0. But by the basic properties of linear transformations,
we can rewrite this as

T (k1x1 + k2x2 + · · ·+ knxn) = 0,

as because T is one-to-one, we know that ker(T ) = {0}, that is, the only vector which maps
to 0 is 0. Hence

k1x1 + k2x2 + · · ·+ knxn = 0.

But then, because these vectors are assumed to be linearly independent, we have that k1 =
· · · = kn = 0, as desired.

5. (a) First we check to see if T is one-to-one by determining ker(T ). If a+ b = 0 then a = −b.
If b + c = 0 then b = −c. If c + a = 0 then c = −a; and hence b = a and so a = −a.
This implies a = 0 and therefore b = c = 0, so ker(T ) = {0} which means that T is
one-to-one.

To see that T is onto, let

x
y
z

 be any vector in R3. Let x = a + b, y = b + c, z = c + a.

Then b = x− a and c = z− a so y = x + z− 2a and a = 1
2
(x− y + z). This tells us that

x = 1
2
(x− y + z) + b so b = 1

2
(x + y− z), and z = c + 1

2
(x− y + z) so c = 1

2
(−x + y + z).

In other words,

T

 1
2
(x− y + z)

1
2
(x + y − z)

1
2
(−x + y + z)

 =

x
y
z


for any x, y, z, and so T is onto. Hence T is an isomorphism.

(b) Recall that the zero vector in P3 is the polynomial with only zero coefficients. Then
a + b = 0, d = 0, c = 0 and a − b = 0. The first and fourth equations tells us that
a = b = 0 as well, so ker(T ) = {0} and thus T is one-to-one.

Let k0 +k1x+k2x
2 +k3x

3 be any vector in P3. Then we set a+b = k0, d = k1, c = k2 and
a−b = k3. Adding the first and fourth equations yields a = 1

2
(k0 +k3) while substracting



them tells us that b = 1
2
(k0 = k3). Hence

T

([
1
2
(k0 + k3)

1
2
(k0 − k3)

k2 k1

])
= k0 + k1x + k2x

2 + k3x
3

for any coefficients k0, k1, k2, k3, and thus T is onto. We can now conclude that it is an
isomorphism.

6. If p(x) = k0 + k1x + k2x
2 then

ST (p(x)) = S(k1 + k2x + k0x
2) = k1 + (k0 + k1 + k2)x + (4k0 + k1 + 2k2)x

2

and

TS(p(x)) = T (k0+(k0+k1+k2)x+(k0+2k1+4k2)x
2) = (k0+k1+k2)+(k0+2k1+4k2)x+k0x

2.

7. Since S is one-to-one, the only vector mapped to 0 (in U) is 0 (in W ). But since T is
one-to-one, the only vector mapped to 0 (in W ) is 0 (in V ). Thus the only vector that ST
maps to 0 (in U) is 0 (in V ), that is, ker(ST ) = {0}. Hence ST is one-to-one.

8. To show that T is invertible, we must show that it is an isomorphism. If T maps to the zero
vector then we have a − c = 0, b − d = 0, 2a − c = 0 and 2b − d = 0. The first and third
equations tell us that a = 2a and so a = c = 0. Similarly, the second and fourth equations
tell us that b = d = 0. Thus ker(T ) = {0} and so T is one-to-one.

Next, let

[
x y
z w

]
be any vector in M22. Then we set a − c = x, b − d = y, 2a − c = z,

2b − d = w. Subtracting the first equation from the third equation, we see that a = z − x
and so c = z − 2x. Subtracting the second equation from the fourth equation, we see that
b = w − y and so d = w − 2y. Hence

T

([
z − x w − y
z − 2x w − 2y

])
=

[
x y
z w

]
for any x, y, z, w. Thus T is onto and therefore is an isomorphism. This also tells us that

T−1

([
x y
z w

])
=

[
z − x w − y
z − 2x w − 2y

]
.


