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SOLUTIONS

[4] 1. We know that
dim(U + dim(U⊥) = n.

The set {f
1
, . . . , f

p
} is linearly independent (because it is orthogonal), and so this is a basis

for U ; hence dim(U) = p. Thus dim(U⊥) = n − p, and indeed there are n − p vectors in
{f

p+1
, . . . , f

n
}. But note that this set is in U⊥ because {f

1
, . . . , f

n
} is an orthogonal set,

and so each of the vectors in {f
p+1

, . . . , f
n
} is orthogonal to all of the vectors in {f

1
, . . . , f

p
},

and thus is orthogonal to all of U . Furthermore, the set {f
p+1

, . . . , f
n
} is also orthogonal,

so these vectors are linearly independent. Since any set of n− p vectors in U=perp must be
a basis for U⊥, we conclude that

U⊥ = span{f
p+1

, . . . , f
n
}.

2.[3] (a) The eigenvalues of A are λ1 = 14 and λ2 = 4. The matrix A− 14I is[
−1 3
3 −9

]
→

[
1 −3
0 0

]
so x2 = t is a free variable and x1 = 3t. Thus an eigenvector corresponding to λ1 is

x1 =

[
3
1

]
.

The matrix A− 4I is [
9 3
3 1

]
→

[
1 1

3

0 0

]
so x2 = t is a free variable and x1 = −1

3
t. Thus an eigenvector corresponding to λ2 is

x2 =

[
1
−3

]
.

Since these eigenvectors correspond to distinct eigenvalues, they must be orthogonal.
Normalising them, then, we see that

Q =
1√
10

[
3 1
1 −3

]
and D =

[
14 0
0 4

]
.



[4] (b) The eigenvalues of A are λ1 = −2 (multiplicity 2) and λ2 = 8. The matrix A + 2I is5 0 5
0 0 0
5 0 5

 →

1 0 1
0 0 0
0 0 0


so x3 = t and x2 = s are free variables, and x1 = −t. Thus

x =

−t
s
t

 = t

−1
0
1

 + s

0
1
0


and so two linearly independent eigenvectors corresponding to λ1 are

x1 =

−1
0
1

 and x2 =

0
1
0

 .

Note that, although it was not guaranteed, these eigenvectors are orthogonal.

The matrix A = 8I is −5 0 5
0 −10 0
5 0 −5

 →

1 0 −1
0 1 0
0 0 0


so x3 = t is a free variable, x2 = 0 and x1 = t. Thus an eigenvector corresponding to λ2

is

x3 =

1
0
1

 .

This must be orthogonal to the other eigenvectors, because they correspond to distinct
eigenvalues.

Hence normalisation gives

Q =

− 1√
2

0 1√
2

0 1 0
1√
2

0 1√
2

 and D =

−2 0 0
0 −2 0
8 0 0

 .

[6] (c) The eigenvalues of A are λ1 = −3 (multiplicity 2) and λ2 = 6. The matrix A + 3I is 4 −4 2
−4 4 −2
2 −2 1

 →

1 −1 1
2

0 0 0
0 0 0


so x3 = t and x2 = s are free variables, and x1 = s− 1

2
t. Thus

x =

s− 1
2
t

s
t

 = t

 1
0
−2

 + s

1
1
0





and so

x1 =

 1
0
−2

 and x2 =

1
1
0


are linearly independent eigenvectors corresponding to λ1. However, these are not or-
thogonal; we need to find an orthogonal basis for the same eigenspace using the Gram-
Schmidt algorithm. We let x̂1 = x1 and so

x̂2 = x2 −
x2 · x̂1

‖x̂1‖2
x̂1 =

1
1
0

− 1

5

 1
0
−2

 =

4
5

1
2
5

 .

Now x̂1 and x̂2 are orthogonal eigenvectors corresponding to λ1.

The matrix A− 6I is−5 −4 2
−4 −5 −2
2 −2 −8

 →

1 4
5

−2
5

0 −9
5

−18
5

0 −18
5

−36
5

 →

1 4
5

−2
5

0 1 2
0 0 0


so x3 = t is a free variable, x2 = −2t and x1 = 2t. Hence

x3 =

 2
−2
1


is an eigenvector corresponding to λ3.

Normalising these, we get

Q =


1√
5

4
3
√

5
2
3

0 5
3
√

5
−2

3

− 2√
5

2
3
√

5
1
3

 and D =

−3 0 0
0 −3 0
0 0 6

 .

[3] 3. Recall that for any square matrix A, det(A) = det(AT ) and det(A−1) = 1
det(A)

. Since Q is

orthogonal, QT = Q−1, and thus we have

det(Q) =
1

det(Q)

[det(Q)]2 = 1

det(Q) = ±1.

4.[2] (a) The eigenvalues of A are λ1 = 2 (multiplicity 2) and λ2 = 8. Since these are both
positive, A is positive definite.



[3] (b) We row-reduce A using only the operation of adding a multiple of one row to another
row: 4 2 2

2 4 2
2 2 4

 →

4 2 2
0 3 1
0 1 3

 →

4 2 2
0 3 1
0 0 8

3


and then we divide each row of this matrix by the square root of its diagonal element to
get

U =

2 1 1

0
√

3 1√
3

0 0 2
√

6
3

 .

[3] 5. By definition,

‖4x + 3y‖2 = 〈4x + 3y, 4x + 3y〉

= 〈4x, 4x〉+ 〈4x, 3y〉+ 〈3y, 4x〉+ 〈3y, 3y〉

= 16〈x, x〉+ 12〈x, y〉+ 12〈y, x〉+ 9〈y, y〉

= 16‖x‖2 + 24〈x, y〉+ 9‖y‖2

= 16(22) + 24(−5) + 9(52)

= 169.

In other words, this is precisely the same question given on Assignment 7, just recast in the
context of inner products.

6.[4] (a) Let

x =

[
a b
c d

]
and y =

[
r s
t u

]
be two vector in M22. Then

T (x + y) = T

([
a + r b + s
c + t d + u

])

=

(a + r)− (d + u)
2(b + s)

c + t


=

(a− d) + (r − u)
2b + 2s
c + t


=

a− d
2b
c

 +

r − u
2s
t


= T (x) + T (y).



Also, for any scalar k,

T (kx) = T

([
ka kb
kc kd

])

=

ka− kd
2kb
kc


= k

a− d
2b
c


= kT (x).

Hence T is a linear transformation.

[2] (b) Note that the zero vector in P2 is 0 = 0, but

T (0) = 1 + x + x2.

Since T (0) 6= 0, T is not a linear transformation.

[2] (c) If A and B are matrices in Mnn, we have T (A + B) = det(A + B). In general, however,
det(A + B) 6= det(A) + det(B) = T (A) + T (B). Hence T is not a linear transformation.

[4] (d) Let p(x) = a + bx + cx2 and q(x) = d + ex + fx2 be two vectors in P2. Then

T (p(x) + q(x)) = T [(a + d) + (b + e)x + (c + f)x2]

= (a + d)x + (b + e)x2 + (c + f)x3

= (ax + bx2 + cx3) + (d + ex + fx2)

= T (p(x)) + T (q(x)).

Also, for any scalar k,

T (kp(x)) = T (ka + kbx + kcx2)

= kax + kbx2 + kcx3

= k(ax + bx2 + cx3)

= kT (p(x)).

Thus T is a linear transformation.


