SOLUTIONS

[4] 1. We know that

$$
\operatorname{dim}\left(U+\operatorname{dim}\left(U^{\perp}\right)=n\right.
$$

The set $\left\{\underline{f}_{1}, \ldots, \underline{f}_{p}\right\}$ is linearly independent (because it is orthogonal), and so this is a basis for U; hence $\operatorname{dim}(U)=p$. Thus $\operatorname{dim}\left(U^{\perp}\right)=n-p$, and indeed there are $n-p$ vectors in $\left\{\underline{f}_{p+1}, \ldots, \underline{f}_{n}\right\}$. But note that this set is in U^{\perp} because $\left\{\underline{f}_{1}, \ldots, \underline{f}_{n}\right\}$ is an orthogonal set, and so each of the vectors in $\left\{\underline{f}_{p+1}, \ldots, \underline{f}_{n}\right\}$ is orthogonal to all of the vectors in $\left\{\underline{f}_{1}, \ldots, \underline{f}_{p}\right\}$, and thus is orthogonal to all of U. Furthermore, the set $\left\{\underline{f}_{p+1}, \ldots, \underline{f}_{n}\right\}$ is also orthogonal, so these vectors are linearly independent. Since any set of $n-p$ vectors in $U^{=}$perp must be a basis for U^{\perp}, we conclude that

$$
U^{\perp}=\operatorname{span}\left\{\underline{f}_{p+1}, \ldots, \underline{f}_{n}\right\}
$$

[3] 2. (a) The eigenvalues of A are $\lambda_{1}=14$ and $\lambda_{2}=4$. The matrix $A-14 I$ is

$$
\left[\begin{array}{cc}
-1 & 3 \\
3 & -9
\end{array}\right] \quad \rightarrow \quad\left[\begin{array}{cc}
1 & -3 \\
0 & 0
\end{array}\right]
$$

so $x_{2}=t$ is a free variable and $x_{1}=3 t$. Thus an eigenvector corresponding to λ_{1} is

$$
\underline{x}_{1}=\left[\begin{array}{l}
3 \\
1
\end{array}\right]
$$

The matrix $A-4 I$ is

$$
\left[\begin{array}{ll}
9 & 3 \\
3 & 1
\end{array}\right] \rightarrow\left[\begin{array}{ll}
1 & \frac{1}{3} \\
0 & 0
\end{array}\right]
$$

so $x_{2}=t$ is a free variable and $x_{1}=-\frac{1}{3} t$. Thus an eigenvector corresponding to λ_{2} is

$$
\underline{x}_{2}=\left[\begin{array}{c}
1 \\
-3
\end{array}\right]
$$

Since these eigenvectors correspond to distinct eigenvalues, they must be orthogonal. Normalising them, then, we see that

$$
Q=\frac{1}{\sqrt{10}}\left[\begin{array}{cc}
3 & 1 \\
1 & -3
\end{array}\right] \quad \text { and } \quad D=\left[\begin{array}{cc}
14 & 0 \\
0 & 4
\end{array}\right] .
$$

[4] (b) The eigenvalues of A are $\lambda_{1}=-2$ (multiplicity 2) and $\lambda_{2}=8$. The matrix $A+2 I$ is

$$
\left[\begin{array}{lll}
5 & 0 & 5 \\
0 & 0 & 0 \\
5 & 0 & 5
\end{array}\right] \rightarrow\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

so $x_{3}=t$ and $x_{2}=s$ are free variables, and $x_{1}=-t$. Thus

$$
\underline{x}=\left[\begin{array}{c}
-t \\
s \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]+s\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

and so two linearly independent eigenvectors corresponding to λ_{1} are

$$
\underline{x}_{1}=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right] \quad \text { and } \quad \underline{x}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] .
$$

Note that, although it was not guaranteed, these eigenvectors are orthogonal.
The matrix $A=8 I$ is

$$
\left[\begin{array}{ccc}
-5 & 0 & 5 \\
0 & -10 & 0 \\
5 & 0 & -5
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

so $x_{3}=t$ is a free variable, $x_{2}=0$ and $x_{1}=t$. Thus an eigenvector corresponding to λ_{2} is

$$
\underline{x}_{3}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] .
$$

This must be orthogonal to the other eigenvectors, because they correspond to distinct eigenvalues.
Hence normalisation gives

$$
Q=\left[\begin{array}{ccc}
-\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\
0 & 1 & 0 \\
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}}
\end{array}\right] \quad \text { and } \quad D=\left[\begin{array}{ccc}
-2 & 0 & 0 \\
0 & -2 & 0 \\
8 & 0 & 0
\end{array}\right]
$$

[6] (c) The eigenvalues of A are $\lambda_{1}=-3$ (multiplicity 2) and $\lambda_{2}=6$. The matrix $A+3 I$ is

$$
\left[\begin{array}{ccc}
4 & -4 & 2 \\
-4 & 4 & -2 \\
2 & -2 & 1
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & -1 & \frac{1}{2} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

so $x_{3}=t$ and $x_{2}=s$ are free variables, and $x_{1}=s-\frac{1}{2} t$. Thus

$$
\underline{x}=\left[\begin{array}{c}
s-\frac{1}{2} t \\
s \\
t
\end{array}\right]=t\left[\begin{array}{c}
1 \\
0 \\
-2
\end{array}\right]+s\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

and so

$$
\underline{x}_{1}=\left[\begin{array}{c}
1 \\
0 \\
-2
\end{array}\right] \quad \text { and } \quad \underline{x}_{2}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

are linearly independent eigenvectors corresponding to λ_{1}. However, these are not orthogonal; we need to find an orthogonal basis for the same eigenspace using the GramSchmidt algorithm. We let $\underline{\hat{x}}_{1}=\underline{x}_{1}$ and so

$$
\underline{\hat{x}}_{2}=\underline{x}_{2}-\frac{\underline{x}_{2} \cdot \hat{x}_{1}}{\left\|\hat{x}_{1}\right\|^{2}} \hat{x}_{1}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]-\frac{1}{5}\left[\begin{array}{c}
1 \\
0 \\
-2
\end{array}\right]=\left[\begin{array}{l}
\frac{4}{5} \\
1 \\
\frac{2}{5}
\end{array}\right] .
$$

Now $\underline{\hat{x}}_{1}$ and $\underline{\underline{x}}_{2}$ are orthogonal eigenvectors corresponding to λ_{1}.
The matrix $A-6 I$ is

$$
\left[\begin{array}{ccc}
-5 & -4 & 2 \\
-4 & -5 & -2 \\
2 & -2 & -8
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & \frac{4}{5} & -\frac{2}{5} \\
0 & -\frac{9}{5} & -\frac{18}{5} \\
0 & -\frac{18}{5} & -\frac{36}{5}
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & \frac{4}{5} & -\frac{2}{5} \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right]
$$

so $x_{3}=t$ is a free variable, $x_{2}=-2 t$ and $x_{1}=2 t$. Hence

$$
\underline{x}_{3}=\left[\begin{array}{c}
2 \\
-2 \\
1
\end{array}\right]
$$

is an eigenvector corresponding to λ_{3}.
Normalising these, we get

$$
Q=\left[\begin{array}{ccc}
\frac{1}{\sqrt{5}} & \frac{4}{3 \sqrt{5}} & \frac{2}{3} \\
0 & \frac{5}{3 \sqrt{5}} & -\frac{2}{3} \\
-\frac{2}{\sqrt{5}} & \frac{2}{3 \sqrt{5}} & \frac{1}{3}
\end{array}\right] \quad \text { and } \quad D=\left[\begin{array}{ccc}
-3 & 0 & 0 \\
0 & -3 & 0 \\
0 & 0 & 6
\end{array}\right] .
$$

[3] 3. Recall that for any square matrix A, $\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$ and $\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}$. Since Q is orthogonal, $Q^{T}=Q^{-1}$, and thus we have

$$
\begin{aligned}
\operatorname{det}(Q)=\frac{1}{\operatorname{det}(Q)} & \\
{[\operatorname{det}(Q)]^{2} } & =1 \\
\operatorname{det}(Q) & = \pm 1 .
\end{aligned}
$$

[2] 4. (a) The eigenvalues of A are $\lambda_{1}=2$ (multiplicity 2) and $\lambda_{2}=8$. Since these are both positive, A is positive definite.
[3] (b) We row-reduce A using only the operation of adding a multiple of one row to another row:

$$
\left[\begin{array}{lll}
4 & 2 & 2 \\
2 & 4 & 2 \\
2 & 2 & 4
\end{array}\right] \rightarrow\left[\begin{array}{lll}
4 & 2 & 2 \\
0 & 3 & 1 \\
0 & 1 & 3
\end{array}\right] \rightarrow\left[\begin{array}{lll}
4 & 2 & 2 \\
0 & 3 & 1 \\
0 & 0 & \frac{8}{3}
\end{array}\right]
$$

and then we divide each row of this matrix by the square root of its diagonal element to get

$$
U=\left[\begin{array}{ccc}
2 & 1 & 1 \\
0 & \sqrt{3} & \frac{1}{\sqrt{3}} \\
0 & 0 & \frac{2 \sqrt{6}}{3}
\end{array}\right] .
$$

[3] 5. By definition,

$$
\begin{aligned}
\|\underline{x}+3 \underline{y}\|^{2} & =\langle 4 \underline{x}+3 \underline{y}, 4 \underline{x}+3 \underline{y}\rangle \\
& =\langle 4 \underline{x}, 4 \underline{x}\rangle+\langle 4 \underline{x}, 3 \underline{y}\rangle+\langle 3 \underline{y}, 4 \underline{x}\rangle+\langle 3 \underline{y}, 3 \underline{y}\rangle \\
& =16\langle\underline{x}, \underline{x}\rangle+12\langle\underline{x}, \underline{y}\rangle+12\langle\underline{y}, \underline{x}\rangle+9\langle\underline{y}, \underline{y}\rangle \\
& =16\|\underline{x}\|^{2}+24\langle\underline{x}, \underline{y}\rangle+9\|\underline{y}\|^{2} \\
& =16\left(2^{2}\right)+24(-5)+9\left(5^{2}\right) \\
& =169 .
\end{aligned}
$$

In other words, this is precisely the same question given on Assignment 7, just recast in the context of inner products.
[4] 6. (a) Let

$$
\underline{x}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \quad \text { and } \quad \underline{y}=\left[\begin{array}{ll}
r & s \\
t & u
\end{array}\right]
$$

be two vector in M_{22}. Then

$$
\begin{aligned}
T(\underline{x}+\underline{y}) & =T\left(\left[\begin{array}{ll}
a+r & b+s \\
c+t & d+u
\end{array}\right]\right) \\
& =\left[\begin{array}{c}
(a+r)-(d+u) \\
2(b+s) \\
c+t
\end{array}\right] \\
& =\left[\begin{array}{c}
(a-d)+(r-u) \\
2 b+2 s \\
c+t
\end{array}\right] \\
& =\left[\begin{array}{c}
a-d \\
2 b \\
c
\end{array}\right]+\left[\begin{array}{c}
r-u \\
2 s \\
t
\end{array}\right] \\
& =T(\underline{x})+T(\underline{y}) .
\end{aligned}
$$

Also, for any scalar k,

$$
\begin{aligned}
T(k \underline{x}) & =T\left(\left[\begin{array}{ll}
k a & k b \\
k c & k d
\end{array}\right]\right) \\
& =\left[\begin{array}{c}
k a-k d \\
2 k b \\
k c
\end{array}\right] \\
& =k\left[\begin{array}{c}
a-d \\
2 b \\
c
\end{array}\right] \\
& =k T(\underline{x}) .
\end{aligned}
$$

Hence T is a linear transformation.
[2] (b) Note that the zero vector in P_{2} is $\underline{0}=0$, but

$$
T(\underline{0})=1+x+x^{2} .
$$

Since $T(\underline{0}) \neq \underline{0}, T$ is not a linear transformation.
[2] (c) If A and B are matrices in $M_{n n}$, we have $T(A+B)=\operatorname{det}(A+B)$. In general, however, $\operatorname{det}(A+B) \neq \operatorname{det}(A)+\operatorname{det}(B)=T(A)+T(B)$. Hence T is not a linear transformation.
[4] (d) Let $p(x)=a+b x+c x^{2}$ and $q(x)=d+e x+f x^{2}$ be two vectors in P_{2}. Then

$$
\begin{aligned}
T(p(x)+q(x)) & =T\left[(a+d)+(b+e) x+(c+f) x^{2}\right] \\
& =(a+d) x+(b+e) x^{2}+(c+f) x^{3} \\
& =\left(a x+b x^{2}+c x^{3}\right)+\left(d+e x+f x^{2}\right) \\
& =T(p(x))+T(q(x)) .
\end{aligned}
$$

Also, for any scalar k,

$$
\begin{aligned}
T(k p(x)) & =T\left(k a+k b x+k c x^{2}\right) \\
& =k a x+k b x^{2}+k c x^{3} \\
& =k\left(a x+b x^{2}+c x^{3}\right) \\
& =k T(p(x)) .
\end{aligned}
$$

Thus T is a linear transformation.

