MEMORIAL UNIVERSITY OF NEWFOUNDLAND

DEPARTMENT OF MATHEMATICS AND STATISTICS

SOLUTIONS

[3] 1. (a) We must simply verify that each pair of vectors is orthogonal:

$$
\begin{aligned}
& \underline{x}_{1} \cdot \underline{x}_{2}=(1)(2)+(-3)(0)+(0)(-4)+(2)(-1)=2+0+0-2=0 \\
& \underline{x}_{1} \cdot \underline{x}_{3}=(1)(1)+(-3)(-1)+(0)(1)+(2)(-2)=1+3+0-4=0 \\
& \underline{x}_{2} \cdot \underline{x}_{3}=(2)(1)+(0)(-1)+(-4)(1)+(-1)(-2)=2+0-4+2=0 .
\end{aligned}
$$

Since these vectors are orthogonal, they are linearly independent, and we are given that they span U; hence they are an orthogonal basis for U.
[3] (b) We must simply normalize the given vectors. Observe that

$$
\begin{aligned}
\left\|\underline{x}_{1}\right\| & =\sqrt{1^{2}+(-3)^{2}+0^{2}+2^{2}}=\sqrt{14} \\
\left\|\underline{x}_{2}\right\| & =\sqrt{2^{2}+0^{2}+(-4)^{2}+(-1)^{2}}=\sqrt{21} \\
\left\|\underline{x}_{3}\right\| & =\sqrt{1^{2}+(-1)^{2}+1^{2}+(-2)^{2}}=\sqrt{7}
\end{aligned}
$$

so an orthonormal basis for U is the set

$$
\left\{\frac{1}{\sqrt{14}}\left[\begin{array}{c}
1 \\
-3 \\
0 \\
2
\end{array}\right], \quad \frac{1}{\sqrt{21}}\left[\begin{array}{c}
2 \\
0 \\
-4 \\
-1
\end{array}\right], \quad \frac{1}{\sqrt{7}}\left[\begin{array}{c}
1 \\
-1 \\
1 \\
-2
\end{array}\right]\right\}
$$

[4] (c) We use the Expansion Theorem. Observe that

$$
\begin{aligned}
& \frac{\underline{y} \cdot \underline{x}_{1}}{\left\|\underline{x}_{1}\right\|^{2}}=\frac{-6}{14}=-\frac{3}{7} \\
& \underline{y \cdot \underline{x}_{2}} \\
& \left\|\underline{x}_{2}\right\|^{2}
\end{aligned}=\frac{12}{21}=\frac{4}{7} \quad \begin{aligned}
& \underline{y \cdot \underline{x}_{3}} \\
& \left\|\underline{x}_{3}\right\|^{2}
\end{aligned}=\frac{30}{7} \quad l
$$

so then

$$
\underline{y}=-\frac{3}{7}\left[\begin{array}{c}
1 \\
-3 \\
0 \\
2
\end{array}\right]+\frac{4}{7}\left[\begin{array}{c}
2 \\
0 \\
-4 \\
-1
\end{array}\right]+\frac{30}{7}\left[\begin{array}{c}
1 \\
-1 \\
1 \\
-2
\end{array}\right] .
$$

[5] (d) Note that

$$
\begin{aligned}
& \frac{\underline{z} \cdot \underline{x}_{1}}{\left\|\underline{x}_{1}\right\|^{2}}=\frac{14}{14}=1 \\
& \underline{z} \cdot \underline{x}_{2} \\
& \left\|\underline{x}_{2}\right\|^{2}
\end{aligned}=\frac{-9}{21}=-\frac{3}{7} \underline{\underline{x}}_{3}=\frac{-10}{\left\|\underline{x}_{3}\right\|^{2}}=\frac{1}{7}-1 .
$$

so

$$
\underline{p}=\left[\begin{array}{c}
1 \\
-3 \\
0 \\
2
\end{array}\right]-\frac{3}{7}\left[\begin{array}{c}
2 \\
0 \\
-4 \\
-1
\end{array}\right]-\frac{10}{7}\left[\begin{array}{c}
1 \\
-1 \\
1 \\
-2
\end{array}\right]=\frac{1}{7}\left[\begin{array}{c}
-9 \\
-112 \\
37
\end{array}\right] .
$$

Note that

$$
\underline{z}-\underline{p}=\frac{1}{7}\left[\begin{array}{l}
-5 \\
-3 \\
-2 \\
-2
\end{array}\right]
$$

is a vector in U^{\perp}, and so

$$
\underline{z}=\frac{1}{7}\left[\begin{array}{c}
-9 \\
-11 \\
37
\end{array}\right]+\frac{1}{7}\left[\begin{array}{l}
-5 \\
-3 \\
-2 \\
-2
\end{array}\right] .
$$

[5] (e) We can find a basis for U^{\perp} by finding a basis for the null space of the corresponding matrix A whose rows are the basis vectors of U. Then

$$
\begin{aligned}
A=\left[\begin{array}{cccc}
1 & -3 & 0 & 2 \\
2 & 0 & -4 & -1 \\
1 & -1 & 1 & -2
\end{array}\right] & \rightarrow\left[\begin{array}{cccc}
1 & -3 & 0 & 2 \\
0 & 6 & -4 & -5 \\
0 & 2 & 1 & -4
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & -3 & 0 & 2 \\
0 & 1 & -\frac{2}{3} & -\frac{5}{6} \\
0 & 0 & \frac{7}{3} & -\frac{7}{3}
\end{array}\right] \\
& \rightarrow\left[\begin{array}{cccc}
1 & -3 & 0 & 2 \\
0 & 1 & -\frac{2}{3} & -\frac{5}{6} \\
0 & 0 & 1 & -1
\end{array}\right]
\end{aligned}
$$

so the only free variable is $x_{4}=t$, and $x_{3}=t, x_{2}=\frac{3}{2} t, x_{1}=\frac{5}{2} t$. Hence a basis for U^{\perp} is

$$
\left\{\left[\begin{array}{l}
5 \\
3 \\
2 \\
2
\end{array}\right]\right\}
$$

and $\operatorname{dim}\left(U^{\perp}\right)=1$.
Alternatively, we can recall that

$$
\operatorname{dim}(U)+\operatorname{dim}\left(U^{\perp}\right)=n
$$

where here we already know that $n=4$ and $\operatorname{dim}(U)=3$, implying that $\operatorname{dim}\left(U^{\perp}\right)=1$. As such, any vector in U^{\perp} is a basis vector, such as the one found in part (c), which is simply the preceding basis vector multiplied by $-\frac{1}{7}$.
[5] 2. By the definition of vector length,

$$
\begin{aligned}
\|\underline{x}+3 \underline{y}\|^{2} & =(4 \underline{x}+3 \underline{y}) \cdot(4 \underline{x}+3 \underline{y}) \\
& =16 \underline{x} \cdot \underline{x}+24 \underline{x} \cdot \underline{y}+9 \underline{y} \cdot \underline{y} \\
& =16\|\underline{x}\|^{2}+24 \underline{x} \cdot \underline{y}+9\|\underline{y}\|^{2} \\
& =16\left(2^{2}\right)+24(-5)+9\left(5^{2}\right) \\
& =169 .
\end{aligned}
$$

[11] 3. We let

$$
\underline{f}_{1}=\underline{x}_{1}=\left[\begin{array}{c}
1 \\
-3 \\
0
\end{array}\right]
$$

so then

$$
\begin{aligned}
\underline{f}_{2} & =\underline{x}_{2}-\frac{\underline{x}_{2} \cdot \underline{f}_{1}}{\left\|\underline{f}_{1}\right\|^{2}} \underline{f}_{1} \\
& =\left[\begin{array}{c}
-2 \\
-3 \\
4
\end{array}\right]-\frac{7}{10}\left[\begin{array}{c}
1 \\
-3 \\
0
\end{array}\right] \\
& =\frac{1}{10}\left[\begin{array}{c}
-27 \\
-9 \\
40
\end{array}\right]
\end{aligned}
$$

Finally,

$$
\begin{aligned}
\underline{f}_{3} & =\underline{x}_{3}-\frac{\underline{x}_{3} \cdot \underline{f}_{1}}{\left\|\underline{f}_{1}\right\|^{2}} f_{1}-\frac{\underline{x}_{3} \cdot \underline{f}_{2}}{\left\|\underline{f}_{2}\right\|^{2}} \underline{f}_{2} \\
& =\left[\begin{array}{c}
4 \\
0 \\
-4
\end{array}\right]-\frac{4}{10}\left[\begin{array}{c}
1 \\
-3 \\
0
\end{array}\right]-\frac{-\frac{134}{5}}{\frac{241}{10}} \cdot \frac{1}{10}\left[\begin{array}{c}
-27 \\
-9 \\
40
\end{array}\right] \\
& =\frac{1}{241}\left[\begin{array}{c}
144 \\
48 \\
108
\end{array}\right] .
\end{aligned}
$$

Hence the desired orthogonal basis is

$$
\left\{\left[\begin{array}{c}
1 \\
-3 \\
0
\end{array}\right], \quad \frac{1}{10}\left[\begin{array}{c}
-27 \\
-9 \\
40
\end{array}\right], \quad \frac{1}{241}\left[\begin{array}{c}
144 \\
48 \\
108
\end{array}\right]\right\}
$$

[4] 4. We simply project y onto the subspace spanned by \underline{x}_{1} and \underline{x}_{2} and obtain the resulting vector $\underline{p}=\operatorname{proj}_{U} \underline{y}:$

$$
\underline{p}=\frac{-6}{36}\left[\begin{array}{c}
-4 \\
-4 \\
2 \\
0
\end{array}\right]+\frac{-11}{6}\left[\begin{array}{c}
-1 \\
0 \\
-2 \\
-1
\end{array}\right]=\frac{1}{6}\left[\begin{array}{c}
15 \\
4 \\
20 \\
11
\end{array}\right] .
$$

This is the vector in U closest to \underline{y}.

