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1.[5] (a) We set

0 = k1

[
1 0
0 0

]
+ k2

[
0 1
0 2

]
+ k3

[
3 0
2 1

]
+ k4

[
2 3
1 4

]
=

[
k1 + 3k3 + 2k4 k2 + 3k4

2k3 + k4 2k2 + k3 + 4k4

]
.

This results in four equations:

k1 + 3k3 + 2k4 = 0

k2 + 3k4 = 0

2k3 + k4 = 0

2k2 + k3 + 4k4 = 0.

Writing this system as a matrix and row-reducing, we obtain
1 0 3 2
0 1 0 3
0 0 2 1
0 2 1 4

 →


1 0 3 2
0 1 0 3
0 0 2 1
0 0 1 −2

 →


1 0 3 2
0 1 0 3
0 0 1 1

2

0 0 0 −5
2

 →


1 0 3 2
0 1 0 3
0 0 1 1

2

0 0 0 1


so k1 = k2 = k3 = k4 = 0. Hence U is linearly independent.

[5] (b) We set

0 = k1(x
3 + 2x) + k2(3− x3) + k3(2x

2 − 2x + 1)

= (k1 − k2)x
3 + 2k3x

2 + (2k1 − 2k3)x + (3k2 + k3).

The coefficient of each power of x must be zero, which provides the system

k1 − k2 = 0

2k3 = 0

2k1 − 2k3 = 0

3k2 + k3 = 0.

The second equation immediately indicates that k3 = 0 and so, from the third and fourth
equation, we also see that k1 = k2 = 0. Hence U is linearly independent.



[5] (c) We have

0 =
k1

x2 − 4
+

k2

x2 + x− 2
+

k3

x2 − 3x + 2

=
k1

(x− 2)(x + 2)
+

k2

(x + 2)(x− 1)
+

k3

(x− 2)(x− 1)

=
k1(x− 1) + k2(x− 2) + k3(x + 2)

(x− 2)(x + 2)(x− 1)

=
(k1 + k2 + k3)x + (−k1 − 2k2 + 2k3)

(x− 2)(x + 2)(x− 1)
.

This implies that

k1 + k2 + k3 = 0

−k1 − 2k2 + 2k3 = 0.

The corresponding matrix is[
1 1 1
−1 −2 2

]
→

[
1 1 1
0 −1 3

]
→

[
1 1 1
0 1 −3

]
so x3 = t is a free variable, x2 = 3t and x1 = −4t. Hence U is linearly dependent; for
instance,

−4

x2 − 4
+

3

x2 + x− 2
+

1

x2 − 3x + 2
= 0.

[4] 2. Note that we assume that A and B are non-zero matrices, as otherwise they are clearly not
linearly independent. As usual, we set

kA + `B = 0,

and we wish to prove that k = ` = 0. First note that we can rewrite this equation as

kAT + `(−BT ) = kAT − `BT = 0

since A is symmetric and B is skew-symmetric. But also, note that

(kA + `B)T = 0T

kAT + `BT = 0,

recalling that the zero vector in this case is the zero matrix, which is its own transpose (that
is, it is symmetric as well). Now we have

kAT − `BT = kAT + `BT

2`BT = 0

and so ` = 0. But now we have that
kAT = 0,

and thus k = 0 as well. Hence {A, B} is linearly independent.



3.[5] (a) Let X =

[
a b
c d

]
be a general vector in M22. Then

AX =

[
1 0
0 −1

] [
a b
c d

]
=

[
a b
−c −d

]
while

XA =

[
a b
c d

] [
1 0
0 −1

]
=

[
a −b
c −d

]
.

If AX = XA then this tells us that

a = a

b = −b

−c = c

−d = −d.

Obviously, the first and fourth equations provide no information but we see that b = c =
0. Thus a matrix in U is of the form[

a 0
0 d

]
= a

[
1 0
0 0

]
+ d

[
0 0
0 1

]
for any scalars a and d. Hence a basis for U is the set{[

1 0
0 0

]
,

[
0 0
0 1

]}
and dim(U) = 2.

[5] (b) Let
p(x) = ax3 + bx2 + cx + d

be a general vector in P3. Then

−p(x) = −ax3 − bx2 − cx− d

while
p(−x) = a(−x)3 + b(−x)2 + c(−x) + d = −ax3 − bx2 − cx− d.

Since −p(x) = p(−x), we can equate the coefficients of like powers, so

−a = −a

−b = b

−c = −c

−d = d.



In this case, neither the first nor the third equations provide any information, but we
can deduce that b = d = 0. Hence a vector in U must be of the form

p(x) = ax3 + cx

for any scalars a and c. Thus a basis for U is

{x3, x}

and again dim(U) = 2.

[4] 4. We know that any linearly independent set in a finite dimensional vector space is contained
in a basis of that vector space. But any non-zero singleton set (that is, a set containing only
one non-zero vector) is necessarily linearly independent, and thus it must be contained in a
basis as well.

[4] 5. Let dim(U) = p then without loss of generality, we can assume that {x1, . . . , xp} is a basis
for U . Now, if y is in span{x1, . . . , xn} then

U = span{x1, . . . , xn} = span{y, x1, . . . , xn} = W

and hence dim(W ) = dim(U). Otherwise, if y is not in span{x1, . . . , xn} then y is not
in span{x1, . . . , xp} and hence, by the Independence Lemma, {y, x1, . . . , xp} is a linearly
independent spanning set (that is, a basis) for W so dim(W ) = dim(U) + 1.

[3] 6. Any polynomial is a continuous function on any interval [a, b] so the space P of all polynomials
is contained in F [a, b] for any a and b. If there exists a finite basis for F [a, b] then there
exists a finite basis for P , which contradicts the fact that P is an infinite dimensional vector
space. Hence F [a, b] is also infinite-dimensional.


