SOLUTIONS

[5] 1. (a) We set

$$
\begin{aligned}
\underline{0} & =k_{1}\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+k_{2}\left[\begin{array}{ll}
0 & 1 \\
0 & 2
\end{array}\right]+k_{3}\left[\begin{array}{ll}
3 & 0 \\
2 & 1
\end{array}\right]+k_{4}\left[\begin{array}{ll}
2 & 3 \\
1 & 4
\end{array}\right] \\
& =\left[\begin{array}{cc}
k_{1}+3 k_{3}+2 k_{4} & k_{2}+3 k_{4} \\
2 k_{3}+k_{4} & 2 k_{2}+k_{3}+4 k_{4}
\end{array}\right] .
\end{aligned}
$$

This results in four equations:

$$
\begin{aligned}
k_{1}+3 k_{3}+2 k_{4} & =0 \\
k_{2}+3 k_{4} & =0 \\
2 k_{3}+k_{4} & =0 \\
2 k_{2}+k_{3}+4 k_{4} & =0 .
\end{aligned}
$$

Writing this system as a matrix and row-reducing, we obtain

$$
\left[\begin{array}{llll}
1 & 0 & 3 & 2 \\
0 & 1 & 0 & 3 \\
0 & 0 & 2 & 1 \\
0 & 2 & 1 & 4
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 0 & 3 & 2 \\
0 & 1 & 0 & 3 \\
0 & 0 & 2 & 1 \\
0 & 0 & 1 & -2
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 0 & 3 & 2 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & \frac{1}{2} \\
0 & 0 & 0 & -\frac{5}{2}
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 0 & 3 & 2 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & \frac{1}{2} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

so $k_{1}=k_{2}=k_{3}=k_{4}=0$. Hence U is linearly independent.
[5] (b) We set

$$
\begin{aligned}
\underline{0} & =k_{1}\left(x^{3}+2 x\right)+k_{2}\left(3-x^{3}\right)+k_{3}\left(2 x^{2}-2 x+1\right) \\
& =\left(k_{1}-k_{2}\right) x^{3}+2 k_{3} x^{2}+\left(2 k_{1}-2 k_{3}\right) x+\left(3 k_{2}+k_{3}\right) .
\end{aligned}
$$

The coefficient of each power of x must be zero, which provides the system

$$
\begin{aligned}
k_{1}-k_{2} & =0 \\
2 k_{3} & =0 \\
2 k_{1}-2 k_{3} & =0 \\
3 k_{2}+k_{3} & =0 .
\end{aligned}
$$

The second equation immediately indicates that $k_{3}=0$ and so, from the third and fourth equation, we also see that $k_{1}=k_{2}=0$. Hence U is linearly independent.
[5] (c) We have

$$
\begin{aligned}
\underline{0} & =\frac{k_{1}}{x^{2}-4}+\frac{k_{2}}{x^{2}+x-2}+\frac{k_{3}}{x^{2}-3 x+2} \\
& =\frac{k_{1}}{(x-2)(x+2)}+\frac{k_{2}}{(x+2)(x-1)}+\frac{k_{3}}{(x-2)(x-1)} \\
& =\frac{k_{1}(x-1)+k_{2}(x-2)+k_{3}(x+2)}{(x-2)(x+2)(x-1)} \\
& =\frac{\left(k_{1}+k_{2}+k_{3}\right) x+\left(-k_{1}-2 k_{2}+2 k_{3}\right)}{(x-2)(x+2)(x-1)} .
\end{aligned}
$$

This implies that

$$
\begin{array}{r}
k_{1}+k_{2}+k_{3}=0 \\
-k_{1}-2 k_{2}+2 k_{3}=0 .
\end{array}
$$

The corresponding matrix is

$$
\left[\begin{array}{ccc}
1 & 1 & 1 \\
-1 & -2 & 2
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & -1 & 3
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1 & -3
\end{array}\right]
$$

so $x_{3}=t$ is a free variable, $x_{2}=3 t$ and $x_{1}=-4 t$. Hence U is linearly dependent; for instance,

$$
\frac{-4}{x^{2}-4}+\frac{3}{x^{2}+x-2}+\frac{1}{x^{2}-3 x+2}=0
$$

[4] 2. Note that we assume that A and B are non-zero matrices, as otherwise they are clearly not linearly independent. As usual, we set

$$
k A+\ell B=\underline{0},
$$

and we wish to prove that $k=\ell=0$. First note that we can rewrite this equation as

$$
k A^{T}+\ell\left(-B^{T}\right)=k A^{T}-\ell B^{T}=\underline{0}
$$

since A is symmetric and B is skew-symmetric. But also, note that

$$
\begin{aligned}
(k A+\ell B)^{T} & =\underline{0}^{T} \\
k A^{T}+\ell B^{T} & =\underline{0},
\end{aligned}
$$

recalling that the zero vector in this case is the zero matrix, which is its own transpose (that is, it is symmetric as well). Now we have

$$
\begin{aligned}
k A^{T}-\ell B^{T} & =k A^{T}+\ell B^{T} \\
2 \ell B^{T} & =\underline{0}
\end{aligned}
$$

and so $\ell=0$. But now we have that

$$
k A^{T}=\underline{0},
$$

and thus $k=0$ as well. Hence $\{A, B\}$ is linearly independent.
[5] 3. (a) Let $X=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ be a general vector in M_{22}. Then

$$
A X=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{cc}
a & b \\
-c & -d
\end{array}\right]
$$

while

$$
X A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]=\left[\begin{array}{ll}
a & -b \\
c & -d
\end{array}\right]
$$

If $A X=X A$ then this tells us that

$$
\begin{aligned}
a & =a \\
b & =-b \\
-c & =c \\
-d & =-d .
\end{aligned}
$$

Obviously, the first and fourth equations provide no information but we see that $b=c=$ 0 . Thus a matrix in U is of the form

$$
\left[\begin{array}{ll}
a & 0 \\
0 & d
\end{array}\right]=a\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+d\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

for any scalars a and d. Hence a basis for U is the set

$$
\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right], \quad\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\}
$$

and $\operatorname{dim}(U)=2$.
[5] (b) Let

$$
p(x)=a x^{3}+b x^{2}+c x+d
$$

be a general vector in P_{3}. Then

$$
-p(x)=-a x^{3}-b x^{2}-c x-d
$$

while

$$
p(-x)=a(-x)^{3}+b(-x)^{2}+c(-x)+d=-a x^{3}-b x^{2}-c x-d .
$$

Since $-p(x)=p(-x)$, we can equate the coefficients of like powers, so

$$
\begin{aligned}
-a & =-a \\
-b & =b \\
-c & =-c \\
-d & =d
\end{aligned}
$$

In this case, neither the first nor the third equations provide any information, but we can deduce that $b=d=0$. Hence a vector in U must be of the form

$$
p(x)=a x^{3}+c x
$$

for any scalars a and c. Thus a basis for U is

$$
\left\{x^{3}, x\right\}
$$

and again $\operatorname{dim}(U)=2$.
[4] 4. We know that any linearly independent set in a finite dimensional vector space is contained in a basis of that vector space. But any non-zero singleton set (that is, a set containing only one non-zero vector) is necessarily linearly independent, and thus it must be contained in a basis as well.
[4] 5. Let $\operatorname{dim}(U)=p$ then without loss of generality, we can assume that $\left\{\underline{x}_{1}, \ldots, \underline{x}_{p}\right\}$ is a basis for U. Now, if \underline{y} is in $\operatorname{span}\left\{\underline{x}_{1}, \ldots, \underline{x}_{n}\right\}$ then

$$
U=\operatorname{span}\left\{\underline{x}_{1}, \ldots, \underline{x}_{n}\right\}=\operatorname{span}\left\{\underline{y}, \underline{x}_{1}, \ldots, \underline{x}_{n}\right\}=W
$$

and hence $\operatorname{dim}(W)=\operatorname{dim}(U)$. Otherwise, if \underline{y} is not in $\operatorname{span}\left\{\underline{x}_{1}, \ldots, \underline{x}_{n}\right\}$ then \underline{y} is not in $\operatorname{span}\left\{\underline{x}_{1}, \ldots, \underline{x}_{p}\right\}$ and hence, by the Independence Lemma, $\left\{\underline{y}, \underline{x}_{1}, \ldots, \underline{x}_{p}\right\}$ is a linearly independent spanning set (that is, a basis) for W so $\operatorname{dim}(W)=\operatorname{dim}(U)+1$.
[3] 6. Any polynomial is a continuous function on any interval $[a, b]$ so the space P of all polynomials is contained in $F[a, b]$ for any a and b. If there exists a finite basis for $F[a, b]$ then there exists a finite basis for P, which contradicts the fact that P is an infinite dimensional vector space. Hence $F[a, b]$ is also infinite-dimensional.

