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SOLUTIONS

1. (a) We set

10 01 30 2 3
0=k {0 O}-f—k‘g{o 2}%—]{?3{2 1}—1—/64{1 4}
|k + 3ks 4 2ky ko + 3ky
B 2ks + ky 2ko + ks + 4ky |

This results in four equations:

ki +3ks +2ky =0
ko +3ky =0
2ks + k4 =0
2ko + ks + 4ky = 0.

Writing this system as a matrix and row-reducing, we obtain

103 2 103 2 103 2 1032
0103 _ fo1ro 3 _ jo1ro 3| (0103
0021 002 1 001 3 001 3
0214 001 -2 000 -3 0001

so k1 = ko = k3 = k4 = 0. Hence U is linearly independent.
We set

0= ky (2 +22) + k(3 — 2%) + k3(22® — 22 + 1)
= (k?l — k‘g)l'?) —f- 2]€3I2 —f- (2]{31 — 2]{53)1} —I— (3]62 —f- k’g)

The coefficient of each power of x must be zero, which provides the system

ki —ko=0
2ks =0

2ky —2ks =0
3ko + k3 = 0.

The second equation immediately indicates that k3 = 0 and so, from the third and fourth
equation, we also see that ky = ky = 0. Hence U is linearly independent.



[5] (c) We have
Ky ko ks
x2—4+x2+x—2+x2—3x+2
- k1 n ko n k3
(=2 (z+2) (+2(xz-1) (z—2)(z—1)
k(= 1)+ ka(r —2) + k3(x + 2)
N (x —=2)(x+2)(x—1)
(k1 + ko + k3)x + (—ky — 2ko + 2k3)
(x —2)(x+2)(x—1) '

0=

This implies that

]{31 + kQ + ]f3 =0
—ki — 2k + 2ks = 0.
The corresponding matrix is
1 1 1 1 1 1 11 1
-1 -2 2 0 -1 3 01 =3
so x3 = t is a free variable, zo = 3t and x1y = —4¢. Hence U is linearly dependent; for
instance,
—4 n 3 n 1 _0
2 —4 24 r—2 22-3x+2
[4] 2. Note that we assume that A and B are non-zero matrices, as otherwise they are clearly not

linearly independent. As usual, we set
kA+{B =0,
and we wish to prove that k = ¢ = 0. First note that we can rewrite this equation as
EAT +0(—BT) = kAT — (BT =0
since A is symmetric and B is skew-symmetric. But also, note that
(kA +¢B)" = 0"
kAT +¢BT =0,

recalling that the zero vector in this case is the zero matrix, which is its own transpose (that
is, it is symmetric as well). Now we have

kAT —¢BT = kAT +¢BT
2BT =0

and so ¢ = 0. But now we have that
kAT =0,

and thus k& = 0 as well. Hence {A, B} is linearly independent.



5] 3. (a) Let X = [Z Z] be a general vector in Mas. Then

=l S

sl 2=

If AX = X A then this tells us that

I
|
QQ
|
Ll

while

a=a

b=—b
—c=c
—d=—d

Obviously, the first and fourth equations provide no information but we see that b = ¢ =
0. Thus a matrix in U is of the form

] R

for any scalars a and d. Hence a basis for U is the set

ool by

p(x) = ax® + ba® + cx +d

and dim(U) = 2.
5] (b) Let
be a general vector in P;. Then
—p(z) = —az® — bax® —cx — d

while
p(—2) = a(—2)* + b(—2)* + c(—2) +d = —az® — bx* — cx — d.

Since —p(z) = p(—x), we can equate the coefficients of like powers, so

—a = —a
-b=10
—c= —c

—d =d.



[4]

In this case, neither the first nor the third equations provide any information, but we
can deduce that b = d = 0. Hence a vector in U must be of the form

p(r) = ar® + cx
for any scalars a and c¢. Thus a basis for U is
{% 2}
and again dim(U) = 2.

4. We know that any linearly independent set in a finite dimensional vector space is contained

in a basis of that vector space. But any non-zero singleton set (that is, a set containing only
one non-zero vector) is necessarily linearly independent, and thus it must be contained in a
basis as well.

. Let dim(U) = p then without loss of generality, we can assume that {z,,...,z,} is a basis

for U. Now, if y is in span{z,,...,z,} then
U =span{z,,...,z,} =span{y,z,...,2,} =W
and hence dim(W) = dim(U). Otherwise, if y is not in span{z,,...,z,} then y is not

in span{z,,...,z,} and hence, by the Independence Lemma, y,zy,...,2,} is a linearly
independent spanning set (that is, a basis) for W so dim(W) = dim(U) + 1.

. Any polynomial is a continuous function on any interval [a, b] so the space P of all polynomials

is contained in F'[a,b] for any a and b. If there exists a finite basis for F[a,b] then there
exists a finite basis for P, which contradicts the fact that P is an infinite dimensional vector
space. Hence F'[a,b] is also infinite-dimensional.



