SOLUTIONS

[5] 1. Assume that there are two zero vectors, $\underline{0}_{1}$ and $\underline{0}_{2}$. Then for any vector \underline{x} in the vector space, $\underline{x}+\underline{0}_{1}=\underline{x}$ and $\underline{x}+\underline{0}_{2}=\underline{x}$. But then $\underline{x}+\underline{0}_{1}=\underline{x}+\underline{0}_{2}$ and so, by the Cancellation Theorem, $\underline{0}_{1}=\underline{0}_{2}$. Hence the zero vector is unique.
[5] 2. If $k \underline{x}=\ell \underline{x}$ then $k \underline{x}-\ell \underline{x}=\underline{0}$ and so $(k-\ell \underline{x}=\underline{0}$. But for scalar p and vector $\underline{y}, p \underline{y}=\underline{0}$ implies that $p=0$ or $\underline{y}=\underline{0}$. Here we are given that $\underline{x} \neq \underline{0}$, so it must be that $k-\bar{\ell}=\overline{0}$ and thus $k=\ell$.
[5] 3. (a) Observe that the zero matrix (that is, the zero vector in M_{22}) is symmetric, and hence is in U. Also, if A and B are symmetric then

$$
(A+B)^{T}=A^{T}+B^{T}=A+B
$$

so U is closed under addition. Finally, for any scalar k,

$$
(k A)^{T}=k A^{T}=k A,
$$

so U is closed under scalar multiplication. Thus U is a subspace of V.
[5] (b) The zero vector is $f(x) \equiv 0$, and

$$
\int_{0}^{1} 0 d x=0
$$

so the zero vector is in U. If f and g are in U then

$$
\int_{0}^{1}(f+g)(x) d x=\int_{0}^{1}[f(x)+g(x)] d x=\int_{0}^{1} f(x) d x+\int_{0}^{1} g(x) d x=0+0=0
$$

so U is closed under addition. If k is any scalar,

$$
\int_{0}^{1}(k f)(x) d x=\int_{0}^{1} k f(x) d x=k \int_{0}^{1} f(x) d x=k(0)=0
$$

so U is closed under scalar multiplication. Hence U is a subspace of $F[0,1]$.
(c) From (b), we see that the zero vector is not in U (and, in fact, all three conditions for being a subspace fail). Therefore U is not a subspace of V.
(d) Note that $p(x)=a x^{2}+b x+c$ so $x p(x)=a x^{3}+b x^{2}+c x$. The zero vector can be obtained by setting $a=b=c=0$ so it is in U. If $x p(x)$ and $x q(x)=d x^{3}+e x^{2}+f x$ are two vectors in U then

$$
\begin{aligned}
x p(x)+x q(x) & =\left(a x^{3}+b x^{2}+c x\right)+\left(d x^{3}+e x^{2}+f x\right) \\
& =(a+d) x^{3}+(b+e) x^{2}+(c+f) x
\end{aligned}
$$

is also in U, which is therefore closed under addition. Finally, if k is a scalar,

$$
k x p(x)=k\left(a x^{3}+b x^{2}+c x\right)=k a x^{3}+k b x^{2}+k c x
$$

is in U so U is closed under scalar multiplication. Hence U is a subspace of P_{3}.
[2] (e) Here, $p(x)=a x^{3}+b x^{2}+c x+d$ so $x p(x)=a x^{4}+b x^{3}+c x^{2}+d x$. In general, this is not a member of P_{3}, and so U is not a subset of P_{3}; hence it cannot be a subspace of P_{3} either.
[5] 4. We set

$$
5 x^{2}-6 x+7=k\left(x^{2}-3\right)+\ell(3 x+4)=k x^{2}+3 \ell x+(4 \ell-3 k) .
$$

Then $k=5,3 \ell=-6$ (so $\ell=-2$) and $4 \ell-3 k=7$. However,

$$
4(-2)-3(5)=-23
$$

so the third equation is inconsistent with the first two. Thus \underline{x} is not in the span of \underline{u} and \underline{v}.
[5] 5. We need every possible vector in M_{22} to be a linear combination of the given vectors, so for real numbers a, b, c, d we set

$$
\begin{aligned}
{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] } & =k_{1}\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+k_{2}\left[\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right]+k_{3}\left[\begin{array}{ll}
1 & 2 \\
3 & 0
\end{array}\right]+k_{4}\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \\
& =\left[\begin{array}{cc}
k_{1}+k_{2}+k_{3}+k_{4} & 2\left(k_{2}+k_{3}+k_{4}\right) \\
3\left(k_{3}+k_{4}\right) & 4 k_{4}
\end{array}\right] .
\end{aligned}
$$

Then we arrive at the system of equations

$$
\begin{aligned}
k_{1}+k_{2}+k_{3}+k_{4} & =a \\
2\left(k_{2}+k_{3}+k_{4}\right) & =b \\
3\left(k_{3}+k_{4}\right) & =c \\
4 k_{4} & =d .
\end{aligned}
$$

From the fourth equation, we see that

$$
k_{4}=\frac{d}{4} .
$$

From the third,

$$
k_{3}=\frac{c}{3}-k_{4}=\frac{c}{3}-\frac{d}{4} .
$$

From the second,

$$
k_{2}=\frac{b}{2}-k_{3}-k_{4}=\frac{b}{2}-\frac{c}{3}+\frac{d}{4}-\frac{d}{4}=\frac{b}{2}-\frac{c}{3} .
$$

And from the first,

$$
k_{1}=a-k_{2}-k_{3}-k_{4}=a-\frac{b}{2}+\frac{c}{3}-\frac{c}{3}+\frac{d}{4}-\frac{d}{4}=a-\frac{b}{2} .
$$

Since these exist for any a, b, c, d, we can therefore express any vector in M_{22} as a linear combination of the given vectors. Thus M_{22} is contained in $\operatorname{span}\left\{\underline{x}_{1}, \underline{x}_{2}, \underline{x}_{3}, \underline{x}_{4}\right\}$.
The only other consideration is to note that every vector in $\operatorname{span}\left\{\underline{x}_{1}, \underline{x}_{2}, \underline{x}_{3}, \underline{x}_{4}\right\}$ is clearly a 2×2 matrix, and hence in M_{22}, so $\operatorname{span}\left\{\underline{x}_{1}, \underline{x}_{2}, \underline{x}_{3}, \underline{x}_{4}\right\}$ is contained in M_{22}.
Thus $M_{22}=\operatorname{span}\left\{\underline{x}_{1}, \underline{x}_{2}, \underline{x}_{3}, \underline{x}_{4}\right\}$.

