MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

Assignment 5

Mathematics 2051

Fall 2007

SOLUTIONS

- [5] 1. Assume that there are two zero vectors, $\underline{0}_1$ and $\underline{0}_2$. Then for any vector \underline{x} in the vector space, $\underline{x} + \underline{0}_1 = \underline{x}$ and $\underline{x} + \underline{0}_2 = \underline{x}$. But then $\underline{x} + \underline{0}_1 = \underline{x} + \underline{0}_2$ and so, by the Cancellation Theorem, $\underline{0}_1 = \underline{0}_2$. Hence the zero vector is unique.
- [5] 2. If $k\underline{x} = \ell \underline{x}$ then $k\underline{x} \ell \underline{x} = \underline{0}$ and so $(k \ell)\underline{x} = \underline{0}$. But for scalar p and vector $\underline{y}, p\underline{y} = \underline{0}$ implies that p = 0 or $\underline{y} = \underline{0}$. Here we are given that $\underline{x} \neq \underline{0}$, so it must be that $k \ell = \overline{0}$ and thus $k = \ell$.
- [5] 3. (a) Observe that the zero matrix (that is, the zero vector in M_{22}) is symmetric, and hence is in U. Also, if A and B are symmetric then

$$(A+B)^{T} = A^{T} + B^{T} = A + B,$$

so U is closed under addition. Finally, for any scalar k,

$$(kA)^T = kA^T = kA,$$

so U is closed under scalar multiplication. Thus U is a subspace of V.

(b) The zero vector is $f(x) \equiv 0$, and

$$\int_0^1 0 \, dx = 0$$

so the zero vector is in U. If f and g are in U then

$$\int_0^1 (f+g)(x) \, dx = \int_0^1 [f(x) + g(x)] \, dx = \int_0^1 f(x) \, dx + \int_0^1 g(x) \, dx = 0 + 0 = 0,$$

so U is closed under addition. If k is any scalar,

$$\int_0^1 (kf)(x) \, dx = \int_0^1 kf(x) \, dx = k \int_0^1 f(x) \, dx = k(0) = 0,$$

so U is closed under scalar multiplication. Hence U is a subspace of F[0, 1].

- (c) From (b), we see that the zero vector is not in U (and, in fact, all three conditions for being a subspace fail). Therefore U is not a subspace of V.
- [5] (d) Note that $p(x) = ax^2 + bx + c$ so $xp(x) = ax^3 + bx^2 + cx$. The zero vector can be obtained by setting a = b = c = 0 so it is in U. If xp(x) and $xq(x) = dx^3 + ex^2 + fx$ are two vectors in U then

$$xp(x) + xq(x) = (ax^{3} + bx^{2} + cx) + (dx^{3} + ex^{2} + fx)$$
$$= (a+d)x^{3} + (b+e)x^{2} + (c+f)x$$

is also in U, which is therefore closed under addition. Finally, if k is a scalar,

$$kxp(x) = k(ax^{3} + bx^{2} + cx) = kax^{3} + kbx^{2} + kcx$$

is in U so U is closed under scalar multiplication. Hence U is a subspace of P_3 .

[5]

[3]

[2] (e) Here, $p(x) = ax^3 + bx^2 + cx + d$ so $xp(x) = ax^4 + bx^3 + cx^2 + dx$. In general, this is not a member of P_3 , and so U is not a subset of P_3 ; hence it cannot be a subspace of P_3 either.

[5] 4. We set

$$5x^2 - 6x + 7 = k(x^2 - 3) + \ell(3x + 4) = kx^2 + 3\ell x + (4\ell - 3k).$$

Then $k = 5, 3\ell = -6$ (so $\ell = -2$) and $4\ell - 3k = 7$. However,

$$4(-2) - 3(5) = -23,$$

so the third equation is inconsistent with the first two. Thus \underline{x} is not in the span of \underline{u} and \underline{v} .

5. We need every possible vector in M_{22} to be a linear combination of the given vectors, so for real numbers a, b, c, d we set

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} = k_1 \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + k_2 \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix} + k_3 \begin{bmatrix} 1 & 2 \\ 3 & 0 \end{bmatrix} + k_4 \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
$$= \begin{bmatrix} k_1 + k_2 + k_3 + k_4 & 2(k_2 + k_3 + k_4) \\ 3(k_3 + k_4) & 4k_4 \end{bmatrix}.$$

Then we arrive at the system of equations

$$k_1 + k_2 + k_3 + k_4 = a$$

$$2(k_2 + k_3 + k_4) = b$$

$$3(k_3 + k_4) = c$$

$$4k_4 = d.$$

From the fourth equation, we see that

$$k_4 = \frac{d}{4}.$$

From the third,

$$k_3 = \frac{c}{3} - k_4 = \frac{c}{3} - \frac{d}{4}.$$

From the second,

$$k_2 = \frac{b}{2} - k_3 - k_4 = \frac{b}{2} - \frac{c}{3} + \frac{d}{4} - \frac{d}{4} = \frac{b}{2} - \frac{c}{3}.$$

And from the first,

$$k_1 = a - k_2 - k_3 - k_4 = a - \frac{b}{2} + \frac{c}{3} - \frac{c}{3} + \frac{d}{4} - \frac{d}{4} = a - \frac{b}{2}.$$

Since these exist for any a, b, c, d, we can therefore express any vector in M_{22} as a linear combination of the given vectors. Thus M_{22} is contained in span $\{\underline{x}_1, \underline{x}_2, \underline{x}_3, \underline{x}_4\}$.

The only other consideration is to note that every vector in span{ $\underline{x}_1, \underline{x}_2, \underline{x}_3, \underline{x}_4$ } is clearly a 2×2 matrix, and hence in M_{22} , so span{ $\underline{x}_1, \underline{x}_2, \underline{x}_3, \underline{x}_4$ } is contained in M_{22} .

Thus $M_{22} = \operatorname{span}\{\underline{x}_1, \underline{x}_2, \underline{x}_3, \underline{x}_4\}.$

[5]