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SOLUTIONS

[5] 1. (a) We have
det(A— M) =—(\* =3\ —6A+8) = —(A+2) (A —1)(A—4) =0,

so the eigenvalues of A are \y = —2, Ay = 1 and A3 = 4. Since we have three distinct
eigenvalues, we know that A must be diagonalizable.

For \; = —2, the matrix A + 21 is

1 1 1 1
8 4 —4 L 5 —3 1 5 —5
-4 -2 6 — 0 0 4 — 00 1
0 0 3 00 3 00 0
We see that x3 = 0 and x5 = t is a free variable, while z; = —%t. Thus the eigenspace
corresponding to A; is
1
T2
t|1
0
and so an eigenvector corresponding to Ay is z; = _—;2].
For Ay = 1, the matrix A — [ is _
IR I R A B T
—4 -5 6 — |0 -2 4 — (01 -4
0o 0 0 0 0 0] 00 O
We see that 3 =t is a free variable while x5 = %t and z; = —gt. Thus the eigenspace
corresponding to Ag is
_4
9
14
b g
1
and so an eigenvector corresponding to Ay is z, = [—_%94]
For A3 = 4, the matrix A — 41 is
2 4 —4 1 2 =2 1 2 =2
—4 -8 6 — 0 0 -2 — 00 1
0 0 -3 00 -3 00 O



We see that x3 = 0 and x9 = t is a free variable, while 1 = —2¢. Thus the eigenspace
corresponding to A3 is
-2
t|1
0

and so an eigenvector corresponding to Az is x5 =

Hence D = P"' AP with

|
OHI\D
[

-2 00 [ 1 4 =2
D=0 120 and P=|-2 —-14 1
0 0 4 0 -9 0

We have
det(A— M) =—(A =2 =51 —=3)=—-(A+1)*(A—3) =0,

so the eigenvalues of A are Ay = —1 and Ay = 3. We must check to see if \; has two
linearly independent eigenvectors in order to determine whether A is diagonalizable.

For \; = —1, then, the matrix A + [ is
1 1 -1 1 1 -1
2 2 =2 — 00 O
-1 -1 1 0 0 O

We see that x3 =t and x5 = s are free variables, while z; =t — s. Thus the eigenspace
corresponding to A; is

t—s 1 —1
=t|0] +s| 1
t 1 0
Hence A; does indeed have two linearly independent eigenvectors, say z; = H)] and
Ty = [_(1)1], and therefore A is diagonalizable.
For Ay = 3, the matrix A — 31 is
11 11
-3 1 -1 I —3 3 1 —3 3
2 -2 =2 — 0—§—§ — {0 1 2
1
-1 -1 -3 0 —3 —3 0 0 O
We see that x3 =t is a free variable, while 9 = —2t and x; = —t. Thus the eigenspace
corresponding to Ag is
-1
t{—2
1

. . . -1
and so an eigenvector corresponding to A\g is 3 = [712].



Hence D = P~ AP with

-1 0 0 1 -1 -1
D=0 -10 and P=|0 1 =2
0o 0 3 1 0 1

5] (c) We have
det(A— X)) =—(N° =N = A+1)=—-A=1*(A+1) =0,

so the eigenvalues of A are \; = 1 and Ay = —1. Again, we must check to see if A\; has
two linearly independent eigenvectors in order to determine whether A is diagonalizable.

For A\; =1, then, the matrix A — [ is

-1 2 -1 1 =2 1 1 -2 1
1 0 -1 — 0 2 =2 — 0 1 -1
3 -2 -1 0 4 -4 0 0 O

We see that x3 = t is a free variables, while 9 = ¢t and x; = t as well. Thus the
eigenspace corresponding to A; is

1
t{1
1
Hence A\ does not possess two linearly independent eigenvectors, and therefore A is not
diagonalizable.
[4] 2. Since A and B are similar, there exists an invertible matrix P such that

B =P AP
But because A is idempotent, we have A = A2, So then
B? =P 'APP'AP = P'A*P = P'AP = B,
and therefore B is also idempotent.
[4] 3. Note first that BP~! = P7'A. If we let y = P~'z then
By = BP 'z =P 'Az =P '(\z) = \P 'z = Y.

Hence A is indeed an eigenvalue of B with corresponding eigenvector y = Pz

4] 4. (a) Most axioms will automatically hold by virtue of the properties of 2 x 2 matrices with
the standard operations of matrix addition and scalar multiplication: these includes
axioms A2, A3, S2, S3, S4 and S5. For the remaining axioms, let z = [a i b “ 2— b}

and y = L E d ¢ —5 d] be any two vectors in A, and let k be a scalar.



First we check axiom Al:

a+c a—i—b—i—c—i—d]:[( a+c (a+c)+(b+d)]

zW:L—Hc—d b+d atc)—(b+d) b+d

so z +y isin A, and hence A is closed under addition.
For axiom A4, we note that the zero matrix is in A, as can be seen by setting a = b = 0.
For axiom A5, we note that the negative of x is the vector

ety G oo TS

which is also in A.

Finally, for axiom S1, we have

f — ka k(a+b)| | ka  ka+kb
L= k(a—b) kb | |ka—kb kb

which is in A, and thus A is closed under scalar multiplication.
Since all ten axioms hold, A is a vector space.

B does not constitute a vector space: axiom Ab fails (any ordered pair (z,y) with y > 0
does not have a negative in B) as does axiom S1 (multiplication of any ordered pair
(x,y) with y > 0 by a scalar k& < 0 produces a vector which is not in B).

C' does not constitute a vector space: axiom S3 fails. If z = (a, b, ¢) is in C then
(k+0z=(k+{)(a,b,c)=(ka+ la,b,c)
while
kx + lx = k(a,b,c) + £(a,b,c) = (ka,b,c) + (La,b,c) = (ka + La, 20, 2c)
so (k+0)] # kx + L.

D does not constitute a vector space: axioms S3, S4 and S5 all fail. If z = (a, b, ¢) is in
D then

(k+ 0z = (k+{)(a,b,c) = (c,ka+ la,b)

while
kx + lx = k(a,b,c) + £(a,b,c) = (¢, ka,b) + (¢, la,b) = (2¢, ka + La, 2b)
so (k+ 0)x # kx + lz. Also,
k(tx) = k[l(a,b,c)] = k(c, ba,b) = (b, ke, ba)

while
(k0)x = (kl)(a,b,c) = (¢, kla,b)

so k(lx) # (kf)z. Finally,

1(a,b,c) = (c,a,b) # (a,b,c).



(e) Axioms A2, A3, S2, S3, S4 and S5 hold because they hold for all continuous real-

valued functions. For the remaining axioms, let f and g be vectors (functions) in E so
f(0) = ¢(0) = 1, and take k to be any scalar.

For axiom Al, we see that

(f+9)(1) = f(1)+9(1) =0+0=0,

so (f +g) is in E and thus closure under addition holds.

For axiom A4, observe that the zero vector is the function z such that z(z) = 0 for all
x, and this is in F.

For axiom A5, note that the negative of f is —f and (—f)(1) = —f(1) = —0 = 0 so each
negative is in F.

Finally, for axiom S1 we have

(Kf)(1) = kf(1) = k(0) =0,

so closure under scalar mutliplication is upheld.

Hence E is a vector space.



