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SOLUTIONS

1.[5] (a) We have

det(A− λI) = −(λ3 − 3λ2 − 6λ + 8) = −(λ + 2)(λ− 1)(λ− 4) = 0,

so the eigenvalues of A are λ1 = −2, λ2 = 1 and λ3 = 4. Since we have three distinct
eigenvalues, we know that A must be diagonalizable.

For λ1 = −2, the matrix A + 2I is 8 4 −4
−4 −2 6
0 0 3

 →

1 1
2
−1

2

0 0 4
0 0 3

 →

1 1
2
−1

2

0 0 1
0 0 0

 .

We see that x3 = 0 and x2 = t is a free variable, while x1 = −1
2
t. Thus the eigenspace

corresponding to λ1 is

t

−1
2

1
0


and so an eigenvector corresponding to λ1 is x1 =

[
1
−2
0

]
.

For λ2 = 1, the matrix A− I is 5 4 −4
−4 −5 6
0 0 0

 →

1 4
5

−4
5

0 −9
5

14
5

0 0 0

 →

1 4
5
−4

5

0 1 −14
9

0 0 0

 .

We see that x3 = t is a free variable while x2 = 14
9
t and x1 = −4

9
t. Thus the eigenspace

corresponding to λ2 is

t

−4
9

14
9

1


and so an eigenvector corresponding to λ2 is x2 =

[
4
−14
−9

]
.

For λ3 = 4, the matrix A− 4I is 2 4 −4
−4 −8 6
0 0 −3

 →

1 2 −2
0 0 −2
0 0 −3

 →

1 2 −2
0 0 1
0 0 0

 .



We see that x3 = 0 and x2 = t is a free variable, while x1 = −2t. Thus the eigenspace
corresponding to λ3 is

t

−2
1
0


and so an eigenvector corresponding to λ3 is x3 =

[
−2
1
0

]
.

Hence D = P−1AP with

D =

−2 0 0
0 1 0
0 0 4

 and P =

 1 4 −2
−2 −14 1
0 −9 0

 .

[5] (b) We have
det(A− λI) = −(λ3 − λ2 − 5λ− 3) = −(λ + 1)2(λ− 3) = 0,

so the eigenvalues of A are λ1 = −1 and λ2 = 3. We must check to see if λ1 has two
linearly independent eigenvectors in order to determine whether A is diagonalizable.

For λ1 = −1, then, the matrix A + I is 1 1 −1
2 2 −2
−1 −1 1

 →

1 1 −1
0 0 0
0 0 0

 .

We see that x3 = t and x2 = s are free variables, while x1 = t− s. Thus the eigenspace
corresponding to λ1 is t− s

s
t

 = t

1
0
1

 + s

−1
1
0

 .

Hence λ1 does indeed have two linearly independent eigenvectors, say x1 =
[

1
0
1

]
and

x2 =
[
−1
1
0

]
, and therefore A is diagonalizable.

For λ2 = 3, the matrix A− 3I is−3 1 −1
2 −2 −2
−1 −1 −3

 →

1 −1
3

1
3

0 −4
3
−8

3

0 −4
3
−8

3

 →

1 −1
3

1
3

0 1 2
0 0 0

 .

We see that x3 = t is a free variable, while x2 = −2t and x1 = −t. Thus the eigenspace
corresponding to λ2 is

t

−1
−2
1


and so an eigenvector corresponding to λ2 is x3 =

[ −1
−2
1

]
.



Hence D = P−1AP with

D =

−1 0 0
0 −1 0
0 0 3

 and P =

1 −1 −1
0 1 −2
1 0 1

 .

[5] (c) We have
det(A− λI) = −(λ3 − λ2 − λ + 1) = −(λ− 1)2(λ + 1) = 0,

so the eigenvalues of A are λ1 = 1 and λ2 = −1. Again, we must check to see if λ1 has
two linearly independent eigenvectors in order to determine whether A is diagonalizable.

For λ1 = 1, then, the matrix A− I is−1 2 −1
1 0 −1
3 −2 −1

 →

1 −2 1
0 2 −2
0 4 −4

 →

1 −2 1
0 1 −1
0 0 0

 .

We see that x3 = t is a free variables, while x2 = t and x1 = t as well. Thus the
eigenspace corresponding to λ1 is

t

1
1
1

 .

Hence λ1 does not possess two linearly independent eigenvectors, and therefore A is not
diagonalizable.

[4] 2. Since A and B are similar, there exists an invertible matrix P such that

B = P−1AP.

But because A is idempotent, we have A = A2. So then

B2 = P−1APP−1AP = P−1A2P = P−1AP = B,

and therefore B is also idempotent.

[4] 3. Note first that BP−1 = P−1A. If we let y = P−1x then

By = BP−1x = P−1Ax = P−1(λx) = λP−1x = λy.

Hence λ is indeed an eigenvalue of B with corresponding eigenvector y = P−1x.

4.[4] (a) Most axioms will automatically hold by virtue of the properties of 2 × 2 matrices with
the standard operations of matrix addition and scalar multiplication: these includes

axioms A2, A3, S2, S3, S4 and S5. For the remaining axioms, let x =

[
a a + b

a− b b

]
and y =

[
c c + d

c− d d

]
be any two vectors in A, and let k be a scalar.



First we check axiom A1:

x + y =

[
a + c a + b + c + d

a− b + c− d b + d

]
=

[
a + c (a + c) + (b + d)

(a + c)− (b + d) b + d

]
so x + y is in A, and hence A is closed under addition.

For axiom A4, we note that the zero matrix is in A, as can be seen by setting a = b = 0.

For axiom A5, we note that the negative of x is the vector[
−a −(a + b)

−(a− b) −b

]
=

[
−a (−a) + (−b)

(−a)− (−b) −b

]
which is also in A.

Finally, for axiom S1, we have

kx =

[
ka k(a + b)

k(a− b) kb

]
=

[
ka ka + kb

ka− kb kb

]
which is in A, and thus A is closed under scalar multiplication.

Since all ten axioms hold, A is a vector space.

[3] (b) B does not constitute a vector space: axiom A5 fails (any ordered pair (x, y) with y > 0
does not have a negative in B) as does axiom S1 (multiplication of any ordered pair
(x, y) with y > 0 by a scalar k < 0 produces a vector which is not in B).

[3] (c) C does not constitute a vector space: axiom S3 fails. If x = (a, b, c) is in C then

(k + `)x = (k + `)(a, b, c) = (ka + `a, b, c)

while

kx + `x = k(a, b, c) + `(a, b, c) = (ka, b, c) + (`a, b, c) = (ka + `a, 2b, 2c)

so (k + `)[ 6= kx + `x.

[3] (d) D does not constitute a vector space: axioms S3, S4 and S5 all fail. If x = (a, b, c) is in
D then

(k + `)x = (k + `)(a, b, c) = (c, ka + `a, b)

while

kx + `x = k(a, b, c) + `(a, b, c) = (c, ka, b) + (c, `a, b) = (2c, ka + `a, 2b)

so (k + `)x 6= kx + `x. Also,

k(`x) = k[`(a, b, c)] = k(c, `a, b) = (b, kc, `a)

while
(k`)x = (k`)(a, b, c) = (c, k`a, b)

so k(`x) 6= (k`)x. Finally,

1(a, b, c) = (c, a, b) 6= (a, b, c).



[4] (e) Axioms A2, A3, S2, S3, S4 and S5 hold because they hold for all continuous real-
valued functions. For the remaining axioms, let f and g be vectors (functions) in E so
f(0) = g(0) = 1, and take k to be any scalar.

For axiom A1, we see that

(f + g)(1) = f(1) + g(1) = 0 + 0 = 0,

so (f + g) is in E and thus closure under addition holds.

For axiom A4, observe that the zero vector is the function z such that z(x) ≡ 0 for all
x, and this is in E.

For axiom A5, note that the negative of f is −f and (−f)(1) = −f(1) = −0 = 0 so each
negative is in E.

Finally, for axiom S1 we have

(kf)(1) = kf(1) = k(0) = 0,

so closure under scalar mutliplication is upheld.

Hence E is a vector space.


