SOLUTIONS

[5] 1. (a) We have

$$
\operatorname{det}(A-\lambda I)=-\left(\lambda^{3}-3 \lambda^{2}-6 \lambda+8\right)=-(\lambda+2)(\lambda-1)(\lambda-4)=0,
$$

so the eigenvalues of A are $\lambda_{1}=-2, \lambda_{2}=1$ and $\lambda_{3}=4$. Since we have three distinct eigenvalues, we know that A must be diagonalizable.
For $\lambda_{1}=-2$, the matrix $A+2 I$ is

$$
\left[\begin{array}{ccc}
8 & 4 & -4 \\
-4 & -2 & 6 \\
0 & 0 & 3
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & \frac{1}{2} & -\frac{1}{2} \\
0 & 0 & 4 \\
0 & 0 & 3
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & \frac{1}{2} & -\frac{1}{2} \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

We see that $x_{3}=0$ and $x_{2}=t$ is a free variable, while $x_{1}=-\frac{1}{2} t$. Thus the eigenspace corresponding to λ_{1} is

$$
t\left[\begin{array}{c}
-\frac{1}{2} \\
1 \\
0
\end{array}\right]
$$

and so an eigenvector corresponding to λ_{1} is $\underline{x}_{1}=\left[\begin{array}{c}1 \\ -2 \\ 0\end{array}\right]$.
For $\lambda_{2}=1$, the matrix $A-I$ is

$$
\left[\begin{array}{ccc}
5 & 4 & -4 \\
-4 & -5 & 6 \\
0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & \frac{4}{5} & -\frac{4}{5} \\
0 & -\frac{9}{5} & \frac{14}{5} \\
0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & \frac{4}{5} & -\frac{4}{5} \\
0 & 1 & -\frac{14}{9} \\
0 & 0 & 0
\end{array}\right] .
$$

We see that $x_{3}=t$ is a free variable while $x_{2}=\frac{14}{9} t$ and $x_{1}=-\frac{4}{9} t$. Thus the eigenspace corresponding to λ_{2} is

$$
t\left[\begin{array}{c}
-\frac{4}{9} \\
\frac{14}{9} \\
1
\end{array}\right]
$$

and so an eigenvector corresponding to λ_{2} is $\underline{x}_{2}=\left[\begin{array}{c}4 \\ -14 \\ -9\end{array}\right]$.
For $\lambda_{3}=4$, the matrix $A-4 I$ is

$$
\left[\begin{array}{ccc}
2 & 4 & -4 \\
-4 & -8 & 6 \\
0 & 0 & -3
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 2 & -2 \\
0 & 0 & -2 \\
0 & 0 & -3
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 2 & -2 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

We see that $x_{3}=0$ and $x_{2}=t$ is a free variable, while $x_{1}=-2 t$. Thus the eigenspace corresponding to λ_{3} is

$$
t\left[\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right]
$$

and so an eigenvector corresponding to λ_{3} is $\underline{x}_{3}=\left[\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right]$.
Hence $D=P^{-1} A P$ with

$$
D=\left[\begin{array}{ccc}
-2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 4
\end{array}\right] \quad \text { and } \quad P=\left[\begin{array}{ccc}
1 & 4 & -2 \\
-2 & -14 & 1 \\
0 & -9 & 0
\end{array}\right]
$$

(b) We have

$$
\begin{equation*}
\operatorname{det}(A-\lambda I)=-\left(\lambda^{3}-\lambda^{2}-5 \lambda-3\right)=-(\lambda+1)^{2}(\lambda-3)=0 \tag{5}
\end{equation*}
$$

so the eigenvalues of A are $\lambda_{1}=-1$ and $\lambda_{2}=3$. We must check to see if λ_{1} has two linearly independent eigenvectors in order to determine whether A is diagonalizable.
For $\lambda_{1}=-1$, then, the matrix $A+I$ is

$$
\left[\begin{array}{ccc}
1 & 1 & -1 \\
2 & 2 & -2 \\
-1 & -1 & 1
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 1 & -1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

We see that $x_{3}=t$ and $x_{2}=s$ are free variables, while $x_{1}=t-s$. Thus the eigenspace corresponding to λ_{1} is

$$
\left[\begin{array}{c}
t-s \\
s \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]+s\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]
$$

Hence λ_{1} does indeed have two linearly independent eigenvectors, say $\underline{x}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ and $\underline{x}_{2}=\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right]$, and therefore A is diagonalizable.
For $\lambda_{2}=3$, the matrix $A-3 I$ is

$$
\left[\begin{array}{ccc}
-3 & 1 & -1 \\
2 & -2 & -2 \\
-1 & -1 & -3
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & -\frac{1}{3} & \frac{1}{3} \\
0 & -\frac{4}{3} & -\frac{8}{3} \\
0 & -\frac{4}{3} & -\frac{8}{3}
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & -\frac{1}{3} & \frac{1}{3} \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right]
$$

We see that $x_{3}=t$ is a free variable, while $x_{2}=-2 t$ and $x_{1}=-t$. Thus the eigenspace corresponding to λ_{2} is

$$
t\left[\begin{array}{c}
-1 \\
-2 \\
1
\end{array}\right]
$$

and so an eigenvector corresponding to λ_{2} is $\underline{x}_{3}=\left[\begin{array}{c}-1 \\ -2 \\ 1\end{array}\right]$.

Hence $D=P^{-1} A P$ with

$$
D=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 3
\end{array}\right] \quad \text { and } \quad P=\left[\begin{array}{ccc}
1 & -1 & -1 \\
0 & 1 & -2 \\
1 & 0 & 1
\end{array}\right]
$$

[5] (c) We have

$$
\operatorname{det}(A-\lambda I)=-\left(\lambda^{3}-\lambda^{2}-\lambda+1\right)=-(\lambda-1)^{2}(\lambda+1)=0,
$$

so the eigenvalues of A are $\lambda_{1}=1$ and $\lambda_{2}=-1$. Again, we must check to see if λ_{1} has two linearly independent eigenvectors in order to determine whether A is diagonalizable. For $\lambda_{1}=1$, then, the matrix $A-I$ is

$$
\left[\begin{array}{ccc}
-1 & 2 & -1 \\
1 & 0 & -1 \\
3 & -2 & -1
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & -2 & 1 \\
0 & 2 & -2 \\
0 & 4 & -4
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & -2 & 1 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right]
$$

We see that $x_{3}=t$ is a free variables, while $x_{2}=t$ and $x_{1}=t$ as well. Thus the eigenspace corresponding to λ_{1} is

$$
t\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

Hence λ_{1} does not possess two linearly independent eigenvectors, and therefore A is not diagonalizable.
[4] 2. Since A and B are similar, there exists an invertible matrix P such that

$$
B=P^{-1} A P
$$

But because A is idempotent, we have $A=A^{2}$. So then

$$
B^{2}=P^{-1} A P P^{-1} A P=P^{-1} A^{2} P=P^{-1} A P=B
$$

and therefore B is also idempotent.
[4] 3. Note first that $B P^{-1}=P^{-1} A$. If we let $\underline{y}=P^{-1} \underline{x}$ then

$$
B \underline{y}=B P^{-1} \underline{x}=P^{-1} A \underline{x}=P^{-1}(\lambda \underline{x})=\lambda P^{-1} \underline{x}=\lambda \underline{y} .
$$

Hence λ is indeed an eigenvalue of B with corresponding eigenvector $\underline{y}=P^{-1} \underline{x}$.
[4] 4. (a) Most axioms will automatically hold by virtue of the properties of 2×2 matrices with the standard operations of matrix addition and scalar multiplication: these includes axioms A2, A3, S2, S3, S4 and S5. For the remaining axioms, let $\underline{x}=\left[\begin{array}{cc}a & a+b \\ a-b & b\end{array}\right]$ and $\underline{y}=\left[\begin{array}{cc}c & c+d \\ c-d & d\end{array}\right]$ be any two vectors in A, and let k be a scalar.

First we check axiom A1:

$$
\underline{x}+\underline{y}=\left[\begin{array}{cc}
a+c & a+b+c+d \\
a-b+c-d & b+d
\end{array}\right]=\left[\begin{array}{cc}
a+c & (a+c)+(b+d) \\
(a+c)-(b+d) & b+d
\end{array}\right]
$$

so $\underline{x}+\underline{y}$ is in A, and hence A is closed under addition.
For axiom A4, we note that the zero matrix is in A, as can be seen by setting $a=b=0$. For axiom A5, we note that the negative of \underline{x} is the vector

$$
\left[\begin{array}{cc}
-a & -(a+b) \\
-(a-b) & -b
\end{array}\right]=\left[\begin{array}{cc}
-a & (-a)+(-b) \\
(-a)-(-b) & -b
\end{array}\right]
$$

which is also in A.
Finally, for axiom S1, we have

$$
k \underline{x}=\left[\begin{array}{cc}
k a & k(a+b) \\
k(a-b) & k b
\end{array}\right]=\left[\begin{array}{cc}
k a & k a+k b \\
k a-k b & k b
\end{array}\right]
$$

which is in A, and thus A is closed under scalar multiplication.
Since all ten axioms hold, A is a vector space.
[3] (b) B does not constitute a vector space: axiom A5 fails (any ordered pair (x, y) with $y>0$ does not have a negative in B) as does axiom S 1 (multiplication of any ordered pair (x, y) with $y>0$ by a scalar $k<0$ produces a vector which is not in $B)$.
[3] (c) C does not constitute a vector space: axiom S3 fails. If $\underline{x}=(a, b, c)$ is in C then

$$
(k+\ell) \underline{x}=(k+\ell)(a, b, c)=(k a+\ell a, b, c)
$$

while

$$
k \underline{x}+\ell \underline{x}=k(a, b, c)+\ell(a, b, c)=(k a, b, c)+(\ell a, b, c)=(k a+\ell a, 2 b, 2 c)
$$

so $(k+\ell) \underline{[} \neq k \underline{x}+\ell \underline{x}$.
[3] (d) D does not constitute a vector space: axioms S3, S4 and S5 all fail. If $\underline{x}=(a, b, c)$ is in D then

$$
(k+\ell) \underline{x}=(k+\ell)(a, b, c)=(c, k a+\ell a, b)
$$

while

$$
k \underline{x}+\ell \underline{x}=k(a, b, c)+\ell(a, b, c)=(c, k a, b)+(c, \ell a, b)=(2 c, k a+\ell a, 2 b)
$$

so $(k+\ell) \underline{x} \neq k \underline{x}+\ell \underline{x}$. Also,

$$
k(\ell \underline{x})=k[\ell(a, b, c)]=k(c, \ell a, b)=(b, k c, \ell a)
$$

while

$$
(k \ell) \underline{x}=(k \ell)(a, b, c)=(c, k \ell a, b)
$$

so $k(\ell \underline{x}) \neq(k \ell) \underline{x}$. Finally,

$$
1(a, b, c)=(c, a, b) \neq(a, b, c) .
$$

[4] (e) Axioms A2, A3, S2, S3, S4 and S5 hold because they hold for all continuous realvalued functions. For the remaining axioms, let f and g be vectors (functions) in E so $f(0)=g(0)=1$, and take k to be any scalar.
For axiom A1, we see that

$$
(f+g)(1)=f(1)+g(1)=0+0=0,
$$

so $(f+g)$ is in E and thus closure under addition holds.
For axiom A4, observe that the zero vector is the function z such that $z(x) \equiv 0$ for all x, and this is in E.
For axiom A5, note that the negative of f is $-f$ and $(-f)(1)=-f(1)=-0=0$ so each negative is in E.
Finally, for axiom S1 we have

$$
(k f)(1)=k f(1)=k(0)=0,
$$

so closure under scalar mutliplication is upheld.
Hence E is a vector space.

