MEMORIAL UNIVERSITY OF NEWFOUNDLAND
 DEPARTMENT OF MATHEMATICS AND STATISTICS

SOLUTIONS

1. We row-reduce A :

$$
\left[\begin{array}{cccc}
1 & -3 & 2 & 5 \\
-3 & 3 & -1 & -9 \\
-2 & 0 & 1 & -4 \\
-4 & -6 & 7 & -2
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & -3 & 2 & 5 \\
0 & -6 & 5 & 6 \\
0 & -6 & 5 & 6 \\
0 & -18 & 15 & 18
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & -3 & 2 & 5 \\
0 & 1 & -\frac{5}{6} & -1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

Hence a basis for $\operatorname{col}(A)$ is

$$
\left\{\left[\begin{array}{c}
1 \\
-3 \\
-2 \\
-4
\end{array}\right], \quad\left[\begin{array}{c}
-3 \\
3 \\
0 \\
-6
\end{array}\right]\right\}
$$

while a basis for $\operatorname{row}(A)$ is

$$
\left\{\left[\begin{array}{c}
1 \\
-3 \\
2 \\
5
\end{array}\right], \quad\left[\begin{array}{c}
-3 \\
3 \\
-1 \\
-9
\end{array}\right]\right\} .
$$

Finally, we conclude that $\operatorname{rank}(A)=2$.
2. We construct the corresponding matrix A (using the given vectors as the rows of the matrix) and reduce it to row-echelon form:

$$
\begin{aligned}
A & =\left[\begin{array}{ccccc}
1 & 0 & -1 & -4 & 2 \\
1 & -3 & 3 & 3 & 0 \\
0 & 2 & -2 & -1 & 5 \\
-1 & 2 & -1 & 3 & 3
\end{array}\right] \rightarrow\left[\begin{array}{ccccc}
1 & 0 & -1 & -4 & 2 \\
0 & -3 & 4 & 7 & -2 \\
0 & 2 & -2 & -1 & 5 \\
0 & 2 & -2 & -1 & 5
\end{array}\right] \rightarrow\left[\begin{array}{ccccc}
1 & 0 & -1 & -4 & 2 \\
0 & 1 & -\frac{4}{3} & -\frac{7}{3} & \frac{2}{3} \\
0 & 0 & \frac{2}{3} & \frac{11}{3} & \frac{11}{3} \\
0 & 0 & \frac{2}{3} & \frac{11}{3} & \frac{11}{3}
\end{array}\right] \\
& \rightarrow\left[\begin{array}{ccccc}
1 & 0 & -1 & -4 & 2 \\
0 & 1 & -\frac{4}{3} & -\frac{7}{3} & \frac{2}{3} \\
0 & 0 & 1 & \frac{11}{2} & \frac{11}{2} \\
0 & 0 & 0 & 0 & 0
\end{array}\right] .
\end{aligned}
$$

We conclude that a basis for U is

$$
\left\{\left[\begin{array}{c}
1 \\
0 \\
-1 \\
-4 \\
2
\end{array}\right], \quad\left[\begin{array}{c}
1 \\
-3 \\
3 \\
3 \\
0
\end{array}\right], \quad\left[\begin{array}{c}
0 \\
2 \\
-2 \\
-1 \\
5
\end{array}\right]\right\}
$$

3. (a) Reducing A to row-echelon form gives

$$
\left[\begin{array}{ccc}
1 & 4 & -2 \\
0 & 3 & 1 \\
1 & 1 & -3 \\
2 & -1 & -7 \\
-2 & -5 & 5
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 4 & -2 \\
0 & 3 & 1 \\
0 & -3 & -1 \\
0 & -9 & -3 \\
0 & 3 & 1
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 4 & -2 \\
0 & 1 & \frac{1}{3} \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

so a basis for $\operatorname{col}(A)$ is

$$
\left\{\left[\begin{array}{c}
1 \\
0 \\
1 \\
2 \\
-2
\end{array}\right], \quad\left[\begin{array}{c}
4 \\
3 \\
1 \\
-1 \\
-5
\end{array}\right]\right\}
$$

while a basis for $\operatorname{row}(A)$ is

$$
\left\{\left[\begin{array}{c}
1 \\
4 \\
-2
\end{array}\right],\left[\begin{array}{l}
0 \\
3 \\
1
\end{array}\right]\right\}
$$

Hence $\operatorname{rank}(A)=2$.
(b) Our workings from part (a) also tell us that the general solution to the equation $A \underline{x}=\underline{0}$ has free variable $x_{3}=t$, while $x_{2}=-\frac{1}{3} t$ and $x_{1}=\frac{10}{3} t$ so

$$
\underline{x}=t\left[\begin{array}{c}
10 \\
-1 \\
3
\end{array}\right] .
$$

Hence $\operatorname{null}(A)$ has as its basis the singleton set

$$
\left\{\left[\begin{array}{c}
10 \\
-1 \\
3
\end{array}\right]\right\}
$$

(that is, any member of $\operatorname{null}(A)$ is a multiple of the basis vector) and so $\operatorname{dim}[\operatorname{null}(A)]=1$.
(c) From theory, since A has $n=3$ columns and $r=\operatorname{rank}(A)=2$, we expect

$$
\operatorname{dim}[\operatorname{null}(A)]=n-r=3-2=1
$$

which supports the results of parts (a) and (b).
4. We know that $\operatorname{row}(U A)$ is contained in $\operatorname{row}(A)$, and hence $\operatorname{dim}[\operatorname{row}(U A)] \leq \operatorname{dim}[\operatorname{row}(A)]$. But $\operatorname{rank}(U A)=\operatorname{dim}[\operatorname{row}(U A)]$ and $\operatorname{rank}(A)=\operatorname{dim}[\operatorname{row}(A)]$, so we can conclude that $\operatorname{rank}(U A) \leq \operatorname{rank}(A)$. Furthermore, $\operatorname{row}(U A)=\operatorname{row}(A)$ if U is invertible, so in this case, $\operatorname{dim}[\operatorname{row}(U A)]=\operatorname{dim}[\operatorname{row}(A)]$, and therefore $\operatorname{rank}(U A)=\operatorname{rank}(A)$.
5. (a) Since the columns of A and B are linearly independent, we know that if $A \underline{y}=\underline{0}$ then $\underline{y}=\underline{0}$, and if $B \underline{y}=\underline{0}$ then $\underline{y}=\underline{0}$. So consider any vector \underline{x} such that $A B \underline{x}=\underline{\overline{0}}$. If we set $\bar{B} \underline{x}=\underline{y}$ then this becomes $\bar{A} \underline{y}=\underline{0}$, and hence $\underline{y}=\underline{0}$. But this implies that $B \underline{x}=\underline{0}$, and therefore $\underline{x}=\underline{0}$. Hence the matrix $A B$ has linearly independent columns.
(b) Since the rows of A and B are linearly independent, the columns of A^{T} and B^{T} are linearly independent as well. Consider $(A B)^{T}=B^{T} A^{T}$ and let \underline{x} be any vector such that $B^{T} A^{T} \underline{x}=\underline{0}$. If we set $A^{T} \underline{x}=\underline{y}$ then this becomes $B^{T} \underline{y}=\underline{0}$, which implies that $\underline{y}=\underline{0}$. But now $A^{T} \underline{x}-\underline{0}$, and thus $\underline{x}=\underline{0}$. We can now conclude that $(A B)^{T}$ has linearly independent columns, and therefore that the matrix $A B$ has linearly independent rows.

