SOLUTIONS

[10] 1. We begin by finding the eigenvalues of A. Expanding along the second column, we see that

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =(1-\lambda)[(-5-\lambda)(8-\lambda)-14(-3)] \\
& =(1-\lambda)\left(\lambda^{2}-3 \lambda+2\right) \\
& =(1-\lambda)(\lambda-2)(\lambda-1) \\
& =-(\lambda-1)^{2}(\lambda-2),
\end{aligned}
$$

so the eigenvalues are $\lambda_{1}=1$ (of multiplicitly 2) and $\lambda_{2}=2$.
Now, $A-\lambda_{1} I=A-I$ is the matrix

$$
\left[\begin{array}{ccc}
-6 & 0 & 14 \\
-3 & 0 & 7 \\
-3 & 0 & 7
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 0 & -\frac{7}{3} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

so $x_{3}=t$ and $x_{2}=s$ are free variables, and $x_{1}=\frac{7}{3} t$. Hence

$$
\underline{x}_{1}=\left[\begin{array}{c}
\frac{7}{3} t \\
s \\
t
\end{array}\right]=t\left[\begin{array}{l}
7 \\
0 \\
3
\end{array}\right]+s\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],
$$

so

$$
\left[\begin{array}{l}
7 \\
0 \\
3
\end{array}\right] \text { and }\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

are two linearly independent eigenvectors corresponding to λ_{1}.
Next, $A-\lambda_{2} I=A-2 I$ is the matrix

$$
\left[\begin{array}{ccc}
-7 & 0 & 14 \\
-3 & -1 & 7 \\
-3 & 0 & 6
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 0 & -2 \\
0 & -1 & 1 \\
0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 0 & -2 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right]
$$

so $x_{3}=t$ is a free variable, while $x_{2}=t$ and $x_{1}=2 t$. Thus

$$
\underline{x}_{2}=\left[\begin{array}{l}
2 \\
1 \\
1
\end{array}\right]
$$

is an eigenvector corresponding to λ_{2}.
Since A possesses three linearly independent eigenvectors, it is diagonalizable. Furthermore,

$$
P=\left[\begin{array}{lll}
7 & 0 & 2 \\
0 & 1 & 1 \\
3 & 0 & 1
\end{array}\right] \quad \text { and } \quad D=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

[6] 2. If a matrix B is similar to A then there exists an invertible matrix P such that

$$
\begin{aligned}
B & =P^{-1} A P \\
& =P^{-1} k I P \\
& =k P^{-1} I P \\
& =k P^{-1} P \\
& =k I \\
& =A,
\end{aligned}
$$

so the only matrix similar to A is A itself.
[6] 3. If V is a vector space then for scalars k and ℓ and any vector \underline{x} in $V, k(\ell \underline{x})=(k \ell) \underline{x}$. Here, if $\underline{x}=\left[\begin{array}{l}a \\ b\end{array}\right]$,

$$
k(\ell \underline{x})=k\left(\ell\left[\begin{array}{l}
a \\
b
\end{array}\right]\right)=k\left[\begin{array}{c}
2 \ell a \\
2 \ell b
\end{array}\right]=\left[\begin{array}{l}
2 k(2 \ell a) \\
2 k(2 \ell b)
\end{array}\right]=\left[\begin{array}{c}
4 k \ell a \\
4 k \ell b
\end{array}\right]
$$

while

$$
(k \ell) \underline{x}=(k \ell)\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{l}
2 k \ell a \\
2 k \ell b
\end{array}\right] .
$$

Thus axiom S4 of the definition of vector spaces does not hold.
As well, for any vector \underline{x} in V, we require that $1 \underline{x}=\underline{x}$. However,

$$
1 \underline{x}=1\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{l}
2(1) a \\
2(1) b
\end{array}\right]=\left[\begin{array}{l}
2 a \\
2 b
\end{array}\right] \neq \underline{x} .
$$

Thus axion S 5 also fails.
[9] 4. First we check to see if the zero vector is in U. Recall that the zero vector for $F[0,1]$ is the function $z(x) \equiv 0$. In particular, $z(0)=0$ and $z(1)=0$, so $z(0)=z(1)$ as required.
Next, let f and g be two vector in U, so $f(0)=f(1)$ and $g(0)=g(1)$. Then

$$
(f+g)(0)=f(0)+g(0)=f(1)+g(1)=(f+g)(1)
$$

so U is closed under addition.
Finally, for any scalar k,

$$
(k f)(0)=k f(0)=k f(1)=(k f)(1),
$$

so U is also closed under scalar multiplication. Hence U is a subspace of $F[0,1]$.
[4] 5. First note that $\operatorname{dim}\left(\mathbb{R}^{4}\right)=4$. This means if a set is to span \mathbb{R}^{4} then it must contain at least four vectors, and if a set is to be linearly independent in \mathbb{R}^{4} then it must contain at most four vectors. The set X, then, cannot span \mathbb{R}^{4}, because it contains too few vectors; hence X is not a basis of \mathbb{R}^{4}. The set Y, meanwhile, cannot be linearly independent because it contains too many vectors; thus Y also is not a basis of \mathbb{R}^{4}.
[8] 6. We set

$$
\begin{aligned}
a\left(x^{2}+3\right)+b(x-1)+c\left(2 x^{2}+3 x\right) & =0 \\
(a+2 c) x^{2}+(b+3 c) x+(3 a-b) & =0
\end{aligned}
$$

This results in three equations:

$$
\begin{aligned}
a+2 c & =0 \\
b+3 c & =0 \\
3 a-b & =0 .
\end{aligned}
$$

Solving the first two equations in terms of c and substituting these into the third equation, we get

$$
3(-2 c)-(-3 c)=-3 c=0
$$

so $c=0$. Thus $a=b=0$ as well, and so U is a linearly independent set.
[7] 7. Let

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

be a general vector in M_{22}. If it is to be an element of U, we must have

$$
\begin{aligned}
A^{T} & =-A \\
{\left[\begin{array}{ll}
a & c \\
b & d
\end{array}\right] } & =\left[\begin{array}{ll}
-a & -b \\
-c & -d
\end{array}\right]
\end{aligned}
$$

and so

$$
\begin{aligned}
a & =-a \\
c & =-b \\
b & =-c \\
d & =-d .
\end{aligned}
$$

This tells us that $a=d=0$, while $b=t$ is a free variable and $c=-t$. Hence

$$
A=\left[\begin{array}{cc}
0 & t \\
-t & 0
\end{array}\right]=t\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]
$$

and so a basis for U is

$$
\left\{\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]\right\}
$$

Lastly, $\operatorname{dim}(U)=1$.

