SOLUTIONS

[3] 1. (a) A set of vectors $\left\{\underline{x}_{1}, \ldots, \underline{x}_{p}\right\}$ is linearly independent if

$$
k_{1} \underline{x}_{1}+\cdots+k_{p} \underline{x}_{p}=\underline{0}
$$

has the unique solution $k_{1}=\cdots=k_{p}=0$.
[3] (b) The span of vectors $\left\{\underline{x}_{1}, \ldots, \underline{x}_{p}\right\}$ is the set of all linear combinations of those vectors, that is, the set of all vectors of the form

$$
k_{1} \underline{x}_{1}+\cdots+k_{p} \underline{x}_{p}
$$

for scalars k_{1}, \ldots, k_{p}.
(c) The basis of a subspace U is a linearly independent spanning set for U.
(d) The null space of a matrix A is the set of all vectors \underline{x} such that $A \underline{x}=\underline{0}$.
[6] 2. We must prove that $\operatorname{span}\{\underline{x}, \underline{y}, \underline{z}\}=\operatorname{span}\{\underline{w}, \underline{x}, \underline{y}, \underline{z}\}$. First let \underline{u} be in $\operatorname{span}\{\underline{x}, \underline{y}, \underline{z}\}$, so

$$
\underline{u}=k_{1} \underline{x}+k_{2} \underline{y}+k_{3} \underline{z}
$$

for scalars k_{1}, k_{2} and k_{3}. But then we can write

$$
\underline{u}=0 \underline{w}+k_{1} \underline{x}+k_{2} \underline{y}+k_{3} \underline{z},
$$

so \underline{u} is also a linear combination of $\underline{w}, \underline{\mathrm{x}}, \underline{y}, \underline{z}$, and hence \underline{u} is in $\operatorname{span}\{\underline{w}, \underline{x}, \underline{y}, \underline{z}\}$. Thus $\operatorname{span}\{\underline{x}, \underline{y}, \underline{z}\}$ is contained in $\operatorname{span}\{\underline{w}, \underline{x}, \underline{y}, \underline{z}\}$.
Now let \underline{u} be in $\operatorname{span}\{\underline{w}, \underline{x}, \underline{y}, \underline{z}\}$, so

$$
\underline{u}=k_{1} \underline{w}+k_{2} \underline{x}+k_{3} \underline{y}+k_{4} \underline{z}
$$

for scalars k_{1}, k_{2}, k_{3} and k_{4}. We are also told that \underline{w} is in $\operatorname{span}\{\underline{x}, \underline{y}, \underline{z}\}$ so we can write

$$
\underline{w}=\ell_{1} \underline{x}+\ell_{2} \underline{y}+\ell_{3} \underline{z}
$$

for scalars ℓ_{1}, ℓ_{2} and ℓ_{3}. Thus

$$
\begin{aligned}
\underline{u} & =k_{1}\left(\ell_{1} \underline{x}+\ell_{2} \underline{y}+\ell_{3} \underline{z}\right)+k_{2} \underline{x}+k_{3} \underline{y}+k_{4} \underline{z} \\
& =\left(k_{1} \ell_{1}+k_{2}\right) \underline{x}+\left(k_{1} \ell_{2}+k_{3}\right) \underline{y}+\left(k_{1} \ell_{3}+k_{4}\right) \underline{z},
\end{aligned}
$$

and therefore \underline{u} is a linear combination of $\underline{x}, \underline{y}$ and \underline{z}. Thus \underline{u} is in $\operatorname{span}\{\underline{x}, \underline{y}, \underline{z}\}$, and so $\operatorname{span}\{\underline{w}, \underline{x}, \underline{y}, \underline{z}\}$ is contained in $\operatorname{span}\{\underline{x}, \underline{y}, \underline{z}\}$.
Hence $\operatorname{span}\{\underline{w}, \underline{x}, \underline{y}, \underline{z}\}=\operatorname{span}\{\underline{x}, \underline{y}, \underline{z}\}$, as required.
[10] 3. We set

$$
k_{1} \underline{x}_{1}+k_{2} \underline{x}_{2}+k_{3} \underline{x}_{3}=\underline{0},
$$

which results in the system of equations

$$
\begin{array}{r}
k_{1}+3 k_{3}=0 \\
-4 k_{1}+2 k_{2}+2 k_{3}=0 \\
7 k_{1}-3 k_{2}=0
\end{array}
$$

From the first equation we can write $k_{3}=-\frac{1}{3} k_{1}$. From the third equation we can write $k_{2}=\frac{7}{3} k_{1}$. Substituting both of these into the second equation, we obtain

$$
-4 k_{1}+2\left(\frac{7}{3} k_{1}\right)+2\left(-\frac{1}{3} k_{1}\right)=0
$$

so $k_{1}=t$ is a free variable while $k_{2}=\frac{7}{3} t$ and $k_{3}=-\frac{1}{3} t$. We conclude that these vectors are linearly dependent.
Finally, setting $t=3$, we obtain

$$
3\left[\begin{array}{c}
1 \\
-4 \\
7
\end{array}\right]+7\left[\begin{array}{c}
0 \\
2 \\
-3
\end{array}\right]=\left[\begin{array}{l}
3 \\
2 \\
0
\end{array}\right]
$$

[7] 4. First observe that $\underline{0}$ is in $\operatorname{null}(A)$ because $A \underline{0}=\underline{0}$. Now let \underline{x} and \underline{y} be vectors in $\operatorname{null}(A)$ so $A \underline{x}=A \underline{y}=\underline{0}$. Then

$$
A(\underline{x}+\underline{y})=A \underline{x}+A \underline{y}=\underline{0}+\underline{0}=\underline{0},
$$

and hence $\underline{x}+\underline{y}$ is in $\operatorname{null}(A)$, which is therefore closed under addition. Finally, for any scalar k,

$$
A(k \underline{x})=k A \underline{x}=k \underline{0}=\underline{0},
$$

so $k \underline{x}$ is in $\operatorname{null}(A)$ and we can conclude that (A) is closed under scalar multiplication. Thus $\operatorname{null}(A)$ is a subspace of \mathbb{R}^{n}.
[7] 5. (a) We begin by row-reducing A :

$$
\left[\begin{array}{cccc}
1 & 4 & -3 & -8 \\
0 & -1 & 2 & 4 \\
1 & 1 & 3 & 4
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 4 & -3 & -8 \\
0 & -1 & 2 & 4 \\
0 & -3 & 6 & 12
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 4 & -3 & -8 \\
0 & 1 & -2 & -4 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Hence a basis for the column space is

$$
\left\{\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], \quad\left[\begin{array}{c}
4 \\
-1 \\
1
\end{array}\right]\right\}
$$

while a basis for the row space is

$$
\left\{\left[\begin{array}{c}
1 \\
4 \\
-3 \\
-8
\end{array}\right], \quad\left[\begin{array}{c}
0 \\
-1 \\
2 \\
4
\end{array}\right]\right\}
$$

Finally, $\operatorname{rank}(A)=2$.
[5] (b) From the row-reduced form of A found in part (a), we see that if $A \underline{x}=\underline{0}$ and

$$
\underline{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]
$$

then $x_{4}=t$ and $x_{3}=s$ are free variables,

$$
x_{2}=2 x_{3}+4 x_{4}=2 s+4 t
$$

and

$$
x_{1}=-4 x_{2}+3 x_{3}+8 x_{4}=-5 s-8 t .
$$

Hence

$$
\underline{x}=\left[\begin{array}{c}
-5 s-8 t \\
2 s+4 t \\
s \\
t
\end{array}\right]=s\left[\begin{array}{c}
-5 \\
2 \\
1 \\
0
\end{array}\right]+t\left[\begin{array}{c}
-8 \\
4 \\
0 \\
1
\end{array}\right],
$$

and so a basis for $\operatorname{null}(A)$ is

$$
\left\{\left[\begin{array}{c}
-5 \\
2 \\
1 \\
0
\end{array}\right], \quad\left[\begin{array}{c}
-8 \\
4 \\
0 \\
1
\end{array}\right]\right\}
$$

Hence $\operatorname{dim}[\operatorname{null}(A)]=2$.
[3] (c) From class, we expect

$$
\operatorname{dim}[\operatorname{null}(A)]=n-r
$$

where n is the number of columns of A and $r=\operatorname{rank}(A)$. And indeed, here,

$$
n-r=4-2=2=\operatorname{dim}[\operatorname{null}(A)] .
$$

