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SOLUTIONS

1.[3] (a) A set of vectors {x1, . . . , xp} is linearly independent if

k1x1 + · · ·+ kpxp = 0

has the unique solution k1 = · · · = kp = 0.

[3] (b) The span of vectors {x1, . . . , xp} is the set of all linear combinations of those vectors,
that is, the set of all vectors of the form

k1x1 + · · ·+ kpxp

for scalars k1, . . . , kp.

[3] (c) The basis of a subspace U is a linearly independent spanning set for U .

[3] (d) The null space of a matrix A is the set of all vectors x such that Ax = 0.

[6] 2. We must prove that span{x, y, z} = span{w, x, y, z}. First let u be in span{x, y, z}, so

u = k1x + k2y + k3z

for scalars k1, k2 and k3. But then we can write

u = 0w + k1x + k2y + k3z,

so u is also a linear combination of w,x, y, z, and hence u is in span{w, x, y, z}. Thus
span{x, y, z} is contained in span{w, x, y, z}.
Now let u be in span{w, x, y, z}, so

u = k1w + k2x + k3y + k4z

for scalars k1, k2, k3 and k4. We are also told that w is in span{x, y, z} so we can write

w = `1x + `2y + `3z

for scalars `1, `2 and `3. Thus

u = k1(`1x + `2y + `3z) + k2x + k3y + k4z

= (k1`1 + k2)x + (k1`2 + k3)y + (k1`3 + k4)z,

and therefore u is a linear combination of x, y and z. Thus u is in span{x, y, z}, and so
span{w, x, y, z} is contained in span{x, y, z}.
Hence span{w, x, y, z} = span{x, y, z}, as required.



[10] 3. We set
k1x1 + k2x2 + k3x3 = 0,

which results in the system of equations

k1 + 3k3 = 0

−4k1 + 2k2 + 2k3 = 0

7k1 − 3k2 = 0.

From the first equation we can write k3 = −1
3
k1. From the third equation we can write

k2 = 7
3
k1. Substituting both of these into the second equation, we obtain

−4k1 + 2

(
7

3
k1

)
+ 2

(
−1

3
k1

)
= 0,

so k1 = t is a free variable while k2 = 7
3
t and k3 = −1

3
t. We conclude that these vectors are

linearly dependent.

Finally, setting t = 3, we obtain

3

 1
−4
7

 + 7

 0
2
−3

 =

3
2
0

 .

[7] 4. First observe that 0 is in null(A) because A0 = 0. Now let x and y be vectors in null(A) so
Ax = Ay = 0. Then

A(x + y) = Ax + Ay = 0 + 0 = 0,

and hence x+y is in null(A), which is therefore closed under addition. Finally, for any scalar
k,

A(kx) = kAx = k0 = 0,

so kx is in null(A) and we can conclude that (A) is closed under scalar multiplication. Thus
null(A) is a subspace of Rn.

5.[7] (a) We begin by row-reducing A:1 4 −3 −8
0 −1 2 4
1 1 3 4

 →

1 4 −3 −8
0 −1 2 4
0 −3 6 12

 →

1 4 −3 −8
0 1 −2 −4
0 0 0 0

 .

Hence a basis for the column space is
1

0
1

 ,

 4
−1
1





while a basis for the row space is


1
4
−3
−8

 ,


0
−1
2
4


 .

Finally, rank(A) = 2.

[5] (b) From the row-reduced form of A found in part (a), we see that if Ax = 0 and

x =


x1

x2

x3

x4


then x4 = t and x3 = s are free variables,

x2 = 2x3 + 4x4 = 2s + 4t

and
x1 = −4x2 + 3x3 + 8x4 = −5s− 8t.

Hence

x =


−5s− 8t
2s + 4t

s
t

 = s


−5
2
1
0

 + t


−8
4
0
1

 ,

and so a basis for null(A) is 

−5
2
1
0

 ,


−8
4
0
1


 .

Hence dim[null(A)] = 2.

[3] (c) From class, we expect
dim[null(A)] = n− r

where n is the number of columns of A and r = rank(A). And indeed, here,

n− r = 4− 2 = 2 = dim[null(A)].


