MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

Test 1	Mathematics 2051	Fall 2007
	SOLUTIONS	
1. (a) A set of vectors $\{\underline{x}_1, \ldots, \underline{x}_p\}$ is linearly independent if		
	$k_1\underline{x}_1 + \dots + k_p\underline{x}_p = \underline{0}$	

has the unique solution $k_1 = \cdots = k_p = 0$.

(b) The span of vectors $\{\underline{x}_1, \ldots, \underline{x}_p\}$ is the set of all linear combinations of those vectors, that is, the set of all vectors of the form

$$k_1\underline{x}_1 + \cdots + k_p\underline{x}_p$$

for scalars k_1, \ldots, k_p .

[3]

[3]

- [3] (c) The basis of a subspace U is a linearly independent spanning set for U.
- [3] (d) The null space of a matrix A is the set of all vectors \underline{x} such that $A\underline{x} = \underline{0}$.
- [6] 2. We must prove that $\operatorname{span}\{\underline{x}, \underline{y}, \underline{z}\} = \operatorname{span}\{\underline{w}, \underline{x}, \underline{y}, \underline{z}\}$. First let \underline{u} be in $\operatorname{span}\{\underline{x}, \underline{y}, \underline{z}\}$, so

$$\underline{u} = k_1 \underline{x} + k_2 y + k_3 \underline{z}$$

for scalars k_1 , k_2 and k_3 . But then we can write

$$\underline{u} = 0\underline{w} + k_1\underline{x} + k_2y + k_3\underline{z},$$

so \underline{u} is also a linear combination of $\underline{w}, \underline{x}, \underline{y}, \underline{z}$, and hence \underline{u} is in span $\{\underline{w}, \underline{x}, \underline{y}, \underline{z}\}$. Thus span $\{\underline{x}, \underline{y}, \underline{z}\}$ is contained in span $\{\underline{w}, \underline{x}, \underline{y}, \underline{z}\}$.

Now let \underline{u} be in span $\{\underline{w}, \underline{x}, \underline{y}, \underline{z}\}$, so

$$\underline{u} = k_1 \underline{w} + k_2 \underline{x} + k_3 y + k_4 \underline{z}$$

for scalars k_1, k_2, k_3 and k_4 . We are also told that \underline{w} is in span $\{\underline{x}, y, \underline{z}\}$ so we can write

$$\underline{w} = \ell_1 \underline{x} + \ell_2 y + \ell_3 \underline{z}$$

for scalars ℓ_1 , ℓ_2 and ℓ_3 . Thus

$$\underline{u} = k_1(\ell_1\underline{x} + \ell_2\underline{y} + \ell_3\underline{z}) + k_2\underline{x} + k_3\underline{y} + k_4\underline{z}$$
$$= (k_1\ell_1 + k_2)\underline{x} + (k_1\ell_2 + k_3)y + (k_1\ell_3 + k_4)\underline{z},$$

and therefore \underline{u} is a linear combination of \underline{x} , \underline{y} and \underline{z} . Thus \underline{u} is in span $\{\underline{x}, \underline{y}, \underline{z}\}$, and so span $\{\underline{w}, \underline{x}, \underline{y}, \underline{z}\}$ is contained in span $\{\underline{x}, \underline{y}, \underline{z}\}$.

Hence $\operatorname{span}\{\underline{w}, \underline{x}, y, \underline{z}\} = \operatorname{span}\{\underline{x}, y, \underline{z}\}$, as required.

[10] 3. We set

$$k_1\underline{x}_1 + k_2\underline{x}_2 + k_3\underline{x}_3 = \underline{0},$$

which results in the system of equations

$$k_1 + 3k_3 = 0$$

-4k_1 + 2k_2 + 2k_3 = 0
7k_1 - 3k_2 = 0.

From the first equation we can write $k_3 = -\frac{1}{3}k_1$. From the third equation we can write $k_2 = \frac{7}{3}k_1$. Substituting both of these into the second equation, we obtain

$$-4k_1 + 2\left(\frac{7}{3}k_1\right) + 2\left(-\frac{1}{3}k_1\right) = 0,$$

so $k_1 = t$ is a free variable while $k_2 = \frac{7}{3}t$ and $k_3 = -\frac{1}{3}t$. We conclude that these vectors are linearly dependent.

Finally, setting t = 3, we obtain

$$3\begin{bmatrix}1\\-4\\7\end{bmatrix}+7\begin{bmatrix}0\\2\\-3\end{bmatrix}=\begin{bmatrix}3\\2\\0\end{bmatrix}.$$

[7] 4. First observe that $\underline{0}$ is in null(A) because $A\underline{0} = \underline{0}$. Now let \underline{x} and \underline{y} be vectors in null(A) so $A\underline{x} = Ay = \underline{0}$. Then

$$A(\underline{x}+y) = A\underline{x} + Ay = \underline{0} + \underline{0} = \underline{0},$$

and hence $\underline{x} + \underline{y}$ is in null(A), which is therefore closed under addition. Finally, for any scalar k,

$$A(k\underline{x}) = kA\underline{x} = k\underline{0} = \underline{0}$$

so $k\underline{x}$ is in null(A) and we can conclude that (A) is closed under scalar multiplication. Thus null(A) is a subspace of \mathbb{R}^n .

[7] 5. (a) We begin by row-reducing A:

$$\begin{bmatrix} 1 & 4 & -3 & -8 \\ 0 & -1 & 2 & 4 \\ 1 & 1 & 3 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 4 & -3 & -8 \\ 0 & -1 & 2 & 4 \\ 0 & -3 & 6 & 12 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 4 & -3 & -8 \\ 0 & 1 & -2 & -4 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

Hence a basis for the column space is

$$\left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 4\\-1\\1 \end{bmatrix} \right\}$$

while a basis for the row space is

$$\left\{ \begin{bmatrix} 1\\4\\-3\\-8 \end{bmatrix}, \begin{bmatrix} 0\\-1\\2\\4 \end{bmatrix} \right\}.$$

Finally, $\operatorname{rank}(A) = 2$.

(b) From the row-reduced form of A found in part (a), we see that if $A\underline{x} = \underline{0}$ and

$$\underline{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

then $x_4 = t$ and $x_3 = s$ are free variables,

$$x_2 = 2x_3 + 4x_4 = 2s + 4t$$

and

$$x_1 = -4x_2 + 3x_3 + 8x_4 = -5s - 8t.$$

Hence

Therefore
$$\underline{x} = \begin{bmatrix} -5s - 8t \\ 2s + 4t \\ s \\ t \end{bmatrix} = s \begin{bmatrix} -5 \\ 2 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} -8 \\ 4 \\ 0 \\ 1 \end{bmatrix},$$

and so a basis for null(A) is
$$\left\{ \begin{bmatrix} -5 \\ 2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -8 \\ 4 \\ 0 \\ 1 \end{bmatrix} \right\}.$$

Hence $\dim[\operatorname{null}(A)] = 2$.

(c) From class, we expect

$$\dim[\operatorname{null}(A)] = n - r$$

where n is the number of columns of A and $r = \operatorname{rank}(A)$. And indeed, here,

$$n - r = 4 - 2 = 2 = \dim[\operatorname{null}(A)].$$

[5]

[3]