SOLUTIONS

[2] 1. (a) Since the third component of any vector in U is always 1 , the zero vector is not in U. Hence U is not a subspace of \mathbb{R}^{3}.
[4]
(b) The zero vector is in U since it can be obtained by setting $x=y=z=0$. Let $\left[\begin{array}{c}a \\ b^{2} \\ c\end{array}\right]$ and $\left[\begin{array}{c}d \\ e^{2} \\ f\end{array}\right]$ be any two vectors in U; we must determine if

$$
\left[\begin{array}{c}
a \\
b^{2} \\
c
\end{array}\right]+\left[\begin{array}{c}
d \\
e^{2} \\
f
\end{array}\right]=\left[\begin{array}{c}
a+d \\
b^{2}+e^{2} \\
c+f
\end{array}\right]
$$

is in U. Clearly, $a+d$ and $c+f$ are in \mathbb{R} and since $b^{2}+e^{2} \geq 0$, it must be that $b^{2}+e^{2}=g^{2}$ for some $g \in \mathbb{R}$. Finally, for any scalar k we must investigate whether

$$
k\left[\begin{array}{c}
a \\
b^{2} \\
c
\end{array}\right]=\left[\begin{array}{c}
k a \\
k b^{2} \\
k c
\end{array}\right]
$$

is in U. Now, however, we have a problem: since this must hold for any scalar, it must hold for $k<0$, in which case $k b^{2}$ cannot be the square of a real number. Hence U is not a subspace of \mathbb{R}^{3}.
[4] (c) The zero vector is in U because if $x=y=z=0$ then this satisfies the equation $2 x+3 y=4 z$. Let $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$ and $\left[\begin{array}{l}d \\ e \\ f\end{array}\right]$ be vectors in U, with $2 a+3 b=4 c$ and $2 d+3 e=4 f$. Then

$$
\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]+\left[\begin{array}{l}
d \\
e \\
f
\end{array}\right]=\left[\begin{array}{l}
a+d \\
b+e \\
c+f
\end{array}\right]
$$

and

$$
2(a+d)+3(b+e)=(2 a+3 b)+(2 d+3 e)=4 c+4 f=4(c+f)
$$

so U is closed under addition. Lastly, for any scalar k,

$$
k\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{l}
k a \\
k b \\
k c
\end{array}\right]
$$

for which

$$
2(k a)+3(k b)=k(2 a+3 b)=k(4 c)=4(k c),
$$

so U is also closed under scalar multiplication. Hence U is a subspace of \mathbb{R}^{3}.
[4] (d) The zero vector is in U because it can be obtained by setting $x=y=z=0$. Now consider vectors $\left[\begin{array}{c}a+b \\ b+c \\ c+a\end{array}\right]$ and $\left[\begin{array}{c}d+e \\ e+f \\ f+a\end{array}\right]$ in U. Then

$$
\left[\begin{array}{l}
a+b \\
b+c \\
c+a
\end{array}\right]+\left[\begin{array}{l}
d+e \\
e+f \\
f+d
\end{array}\right]=\left[\begin{array}{l}
a+b+d+e \\
b+c+e+f \\
a+c+d+f
\end{array}\right]=\left[\begin{array}{l}
(a+d)+(b+e) \\
(b+e)+(c+f) \\
(c+f)+(a+d)
\end{array}\right]
$$

We can see that this is in U by setting $x=a+d, y=b+e$ and $z=c+f$. Hence U is closed under addition. Lastly, for any scalar k,

$$
k\left[\begin{array}{l}
a+b \\
b+c \\
c+a
\end{array}\right]=\left[\begin{array}{l}
k a+k b \\
k b+k c \\
k c+k a
\end{array}\right],
$$

which is seen to be in U by setting $x=k a, y=k b$ and $z=k c$. Thus U is closed under scalar multiplication, and so U is a subspace of \mathbb{R}^{3}.
[10] 2. First we show that null A is contained in null $(U A)$. Let \underline{x} be any vector in null (A), so $A \underline{x}=\underline{0}$. Then

$$
U A \underline{x}=U(A \underline{x})=U \underline{0}=\underline{0},
$$

so \underline{x} is also in $\operatorname{null}(U A)$. Thus $\operatorname{null}(A)$ is contained in $\operatorname{null}(U A)$.
Next we'll show that $\operatorname{null}(U A)$ is contained in $\operatorname{null}(A)$. Let \underline{y} be any vector in $\operatorname{null}(U A)$, so $U A y=\underline{0}$. Then, because U is invertible, we can write

$$
\begin{aligned}
U^{-1} U A \underline{y} & =U^{-1} \underline{0} \\
I A \underline{y} & =\underline{0} \\
A \underline{y} & =\underline{0},
\end{aligned}
$$

which means that y is an element of $\operatorname{null}(A)$. Thus null $(U A)$ is contained in null (A). But if $\operatorname{null}(A)$ is contained in $\operatorname{null}(U A)$ and $\operatorname{null}(U A)$ is contained in $\operatorname{null}(A)$, the only possibility is that $\operatorname{null}(A)=\operatorname{null}(U A)$.
[8] 3. U consists of all vectors of the form

$$
k \underline{x}+\ell \underline{y}=\left[\begin{array}{c}
k+\ell \\
7 k+\ell \\
-4 k-3 \ell \\
-2 k+3 \ell
\end{array}\right] .
$$

If \underline{u} is in U then this leads to the system of equations

$$
\begin{aligned}
k+\ell & =-6 \\
3 k+\ell & =0 \\
-7 k-3 \ell & =1 \\
-2 k+\ell & =-5 .
\end{aligned}
$$

The second equation implies that $\ell=-3 k$ and then the first equations yields $-2 k=-6$ so $k=3$ and thus $\ell=-9$. We must check this against the other two equations: the third equation is $-7(3)-3(-9)=6$ as required, but the fourth is $-2(3)+(-9)=-24$, which is definitely not consistent. Hence \underline{u} is not in U.
If \underline{v} is in U then the system of equations becomes

$$
\begin{aligned}
k+\ell & =2 \\
3 k+\ell & =-4 \\
-7 k-3 \ell & =6 \\
-2 k+\ell & =11 .
\end{aligned}
$$

From the first and second equations, we see that $2 k=-6$ so $k=-3$, and thus $\ell=2-k=5$. Again, we need to verify that the entire system is consistent with this result. The third equation becomes $-7(-3)-3(5)=6$ as desired, and the fourth is $-2(-3)+5=11$. Hence \underline{v} is in U and we can write

$$
\underline{v}=-3 \underline{x}+5 \underline{y} .
$$

[8] 4. Any linear combination of \underline{x} and \underline{y} will be of the form

$$
k \underline{x}+\ell \underline{y}=\left[\begin{array}{c}
k-\ell \\
3 \ell \\
2 k+4 \ell
\end{array}\right] .
$$

Immediately, though, we know that we will have to require that $k-\ell=0$ so $k=\ell$. Thus we can now write that any vector spanned by \underline{x} and \underline{y} must be of the form $\left[\begin{array}{c}0 \\ 3 k \\ 6 k\end{array}\right]$. Thus the third component of any such vector will be exactly twice the second, but U exhibits no such restriction. Hence $U \neq \operatorname{span}\{\underline{x}, \underline{y}\}$.

