Due: Thursday, November 15th, 2007. SHOW ALL WORK.

1. Let U be a subspace of \mathbb{R}^{4} spanned by the vectors

$$
\underline{x}_{1}=\left[\begin{array}{c}
1 \\
-3 \\
0 \\
2
\end{array}\right], \quad \underline{x}_{2}=\left[\begin{array}{c}
2 \\
0 \\
-4 \\
-1
\end{array}\right], \quad \underline{x}_{3}=\left[\begin{array}{c}
1 \\
-1 \\
1 \\
-2
\end{array}\right] .
$$

(a) Show that $\left\{\underline{x}_{1}, \underline{x}_{2}, \underline{x}_{3}\right\}$ is an orthogonal basis for U.
(b) Find an orthonormal basis of U.
(c) The vector

$$
\underline{y}=\left[\begin{array}{c}
5 \\
-3 \\
2 \\
-10
\end{array}\right]
$$

lies in U. Express \underline{y} as a linear combination of the orthogonal basis vectors $\underline{x}_{1}, \underline{x}_{2}, \underline{x}_{3}$.
(d) The vector

$$
\underline{z}=\left[\begin{array}{c}
-2 \\
-2 \\
0 \\
5
\end{array}\right]
$$

does not lie in U. Find the projection $\underline{p}=\operatorname{proj}_{U}(\underline{z})$ of \underline{z} onto U. Write \underline{z} as the sum of a vector in U and a vector in U^{\perp}.
(e) Find a basis for U^{\perp} and state $\operatorname{dim}\left(U^{\perp}\right)$.
2. Let \underline{x} and \underline{y} be vectors such that $\|\underline{x}\|=2,\|\underline{y}\|=5$ and $\underline{x} \cdot \underline{y}=-5$. Determine $\|4 \underline{x}+3 \underline{y}\|$.
3. Use the Gram-Schmidt algorithm to find an orthogonal basis for \mathbb{R}^{3} using the basis vectors

$$
\underline{x}_{1}=\left[\begin{array}{c}
1 \\
-3 \\
0
\end{array}\right], \quad \underline{x}_{2}=\left[\begin{array}{c}
-2 \\
-3 \\
4
\end{array}\right], \quad \underline{x}_{3}=\left[\begin{array}{c}
4 \\
0 \\
-4
\end{array}\right] .
$$

4. Let U be the subspace of \mathbb{R}^{4} spanned by the orthogonal vectors

$$
\underline{x}_{1}=\left[\begin{array}{c}
-4 \\
-4 \\
2 \\
0
\end{array}\right] \quad \text { and } \quad \underline{x}_{2}=\left[\begin{array}{c}
-1 \\
0 \\
-2 \\
-1
\end{array}\right] .
$$

Find the vector in U closest to the vector $\underline{y}=\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right]$.

