Due: Tuesday, October 30th, 2007. SHOW ALL WORK.

1. Determine which of the following sets U are linearly independent in the given vector space V.
(a) $V=M_{22}, U=\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 2\end{array}\right],\left[\begin{array}{ll}3 & 0 \\ 2 & 1\end{array}\right],\left[\begin{array}{ll}2 & 3 \\ 1 & 4\end{array}\right]\right\}$
(b) $V=P_{3}, U=\left\{x^{3}+2 x, 3-x^{3}, 2 x^{2}-2 x+1\right\}$
(c) $V=F[-1,0], U=\left\{\frac{1}{x^{2}-4}, \frac{1}{x^{2}+x-2}, \frac{1}{x^{2}-3 x+2}\right\}$
2. Consider two $n \times n$ matrices A and B. If A is symmetric (that is, $A=A^{T}$) and B is skew-symmetric (that is, $B=-B^{T}$), show that the set $\{A, B\}$ is linearly independent in $M_{n n}$.
3. (a) Let $A=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$. Exhibit a basis for the subspace U of M_{22} defined by

$$
U=\{X \mid A X=X A\}
$$

and state $\operatorname{dim}(U)$.
(b) Find a basis for the subspace U of P_{3} given by

$$
U=\{p(x) \mid-p(x)=p(-x)\}
$$

(that is, the subspace of odd polynomials). What is $\operatorname{dim}(U)$?
4. Prove that any non-zero vector in a finite dimensional vector space must be part of a basis.
5. Let $\underline{y}, \underline{x}_{1}, \ldots, \underline{x}_{n}$ be vectors in a vector space V. If $U=\operatorname{span}\left\{\underline{x}_{1}, \ldots, \underline{x}_{n}\right\}$ and $W=$ $\operatorname{span}\left\{\underline{y}, \underline{x}_{1}, \ldots, \underline{x}_{n}\right\}$, prove that either $\operatorname{dim}(W)=\operatorname{dim}(U)$ or $\operatorname{dim}(W)=\operatorname{dim}(U)+1$.
6. Show that $F[a, b]$ is infinite-dimensional for any a and b. (Hint: Consider specific types of functions which must be in $F[a, b]$, particularly those we have used to form other vector spaces.)

