Due: Tuesday, October 23rd, 2007. SHOW ALL WORK.

1. Prove that the zero vector in any vector space is unique.
2. Prove that if \underline{x} is a non-zero vector in a vector space V and k and ℓ are scalars then $k \underline{x}=\ell \underline{x}$ implies $k=\ell$.
3. Consider each of the following vector spaces V and their subsets U. Either prove that U is a subspace of V, or explain why it is not.
(a) $V=M_{22}$, the space of all 2×2 matrices; $U=\left\{A \mid A \in M_{22}, A=A^{T}\right\}$, the set of all symmetric 2×2 matrices
(b) $V=F[0,1]$, the space of continuous functions on $[0,1] ; U=\left\{f \mid \int_{0}^{1} f(x) d x=0\right\}$
(c) $V=F[0,1] ; U=\left\{f \mid \int_{0}^{1} f(x) d x=1\right\}$
(d) $V=P_{3}$, the space of polynomials of degree at most 3; $U=\left\{x p(x) \mid p(x) \in P_{2}\right\}$
(e) $V=P_{3} ; U=\left\{x p(x) \mid p(x) \in P_{3}\right\}$
4. Determine whether $\underline{x}=5 x^{2}-6 x+7$ lies in the span of the vectors $\underline{u}=x^{2}-3$ and $\underline{v}=3 x+4$.
5. Determine whether M_{22} is spanned by the vectors

$$
\underline{x}_{1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right], \quad \underline{x}_{2}=\left[\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right], \quad \underline{x}_{3}=\left[\begin{array}{ll}
1 & 2 \\
3 & 0
\end{array}\right], \quad \underline{x}_{4}=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] .
$$

