Due: Tuesday, October 16th, 2007. SHOW ALL WORK.

1. For each of the following matrices A, determine whether A is diagonalizable. If so, find a diagonal matrix D and an invertible matrix P such that $D=P^{-1} A P$.
(a) $A=\left[\begin{array}{ccc}6 & 4 & -4 \\ -4 & -4 & 6 \\ 0 & 0 & 1\end{array}\right]$
(b) $A=\left[\begin{array}{ccc}0 & 1 & -1 \\ 2 & 1 & -2 \\ -1 & -1 & 0\end{array}\right]$
(c) $A=\left[\begin{array}{ccc}0 & 2 & -1 \\ 1 & 1 & -1 \\ 3 & -2 & 0\end{array}\right]$
2. Consider two similar matrices A and B. Prove that if A is an idempotent matrix (that is, $A^{2}=A$) then B is also idempotent.
3. Let λ be an eigenvalue of A with corresponding eigenvector \underline{x}. Show that if A and B are similar matrices such that $B=P^{-1} A P$ then λ is also an eigenvalue of B with corresponding eigenvector $P^{-1} \underline{x}$. (That is, show that $B P^{-1} \underline{x}=\lambda P^{-1} \underline{x}$.)
4. For each of the following sets, either prove that the set is a vector space with the indicated operations, or explain why it is not.
(a) The set A of all 2×2 matrices of the form $\left[\begin{array}{cc}x & x+y \\ x-y & y\end{array}\right]$ with the usual operations of matrix addition and scalar multiplication
(b) The set B of ordered pairs of real numbers (x, y) where $y \geq 0$, with the usual operations of vector addition and scalar multiplication
(c) The set C of ordered triples of real numbers (x, y, z), with the usual operation of vector addition, but scalar multiplication defined to be

$$
k(x, y, z)=(k x, y, z)
$$

(d) The set D of ordered triples of real numbers (x, y, z), with the usual operation of vector addition, but scalar multiplication defined to be

$$
k(x, y, z)=(z, k x, y)
$$

(e) The set E of all continuous real-valued functions f such that $f(1)=0$, with the usual operations of function addition and scalar multiplication

