MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

A SCICNMENT A	Mathematics 2051	FALL 2007
ASSIGNMENT 4	Mathematics 2051	FALL 2007

Due: Tuesday, October 16th, 2007. SHOW ALL WORK.

- 1. For each of the following matrices A, determine whether A is diagonalizable. If so, find a diagonal matrix D and an invertible matrix P such that $D = P^{-1}AP$.
 - (a) $A = \begin{bmatrix} 6 & 4 & -4 \\ -4 & -4 & 6 \\ 0 & 0 & 1 \end{bmatrix}$ (b) $A = \begin{bmatrix} 0 & 1 & -1 \\ 2 & 1 & -2 \\ -1 & -1 & 0 \end{bmatrix}$ (c) $A = \begin{bmatrix} 0 & 2 & -1 \\ 1 & 1 & -1 \\ 3 & -2 & 0 \end{bmatrix}$
- 2. Consider two similar matrices A and B. Prove that if A is an *idempotent* matrix (that is, $A^2 = A$) then B is also idempotent.
- 3. Let λ be an eigenvalue of A with corresponding eigenvector \underline{x} . Show that if A and B are similar matrices such that $B = P^{-1}AP$ then λ is also an eigenvalue of B with corresponding eigenvector $P^{-1}\underline{x}$. (That is, show that $BP^{-1}\underline{x} = \lambda P^{-1}\underline{x}$.)
- 4. For each of the following sets, either prove that the set is a vector space with the indicated operations, or explain why it is not.
 - (a) The set A of all 2×2 matrices of the form $\begin{bmatrix} x & x+y \\ x-y & y \end{bmatrix}$ with the usual operations of matrix addition and scalar multiplication
 - (b) The set B of ordered pairs of real numbers (x, y) where $y \ge 0$, with the usual operations of vector addition and scalar multiplication
 - (c) The set C of ordered triples of real numbers (x, y, z), with the usual operation of vector addition, but scalar multiplication defined to be

$$k(x, y, z) = (kx, y, z)$$

(d) The set D of ordered triples of real numbers (x, y, z), with the usual operation of vector addition, but scalar multiplication defined to be

$$k(x, y, z) = (z, kx, y)$$

(e) The set E of all continuous real-valued functions f such that f(1) = 0, with the usual operations of function addition and scalar multiplication