Due: Tuesday, October 2nd, 2007. SHOW ALL WORK.

1. Find bases for the column space and row space of the matrix A and determine $\operatorname{rank}(A)$, where

$$
A=\left[\begin{array}{cccc}
1 & -3 & 2 & 5 \\
-3 & 3 & -1 & -9 \\
-2 & 0 & 1 & -4 \\
-4 & -6 & 7 & -2
\end{array}\right]
$$

2. Find a basis for the subspace U given by

$$
U=\operatorname{span}\left\{\left[\begin{array}{c}
1 \\
0 \\
-1 \\
-4 \\
2
\end{array}\right], \quad\left[\begin{array}{c}
1 \\
-3 \\
3 \\
3 \\
0
\end{array}\right], \quad\left[\begin{array}{c}
0 \\
2 \\
-2 \\
-1 \\
5
\end{array}\right], \quad\left[\begin{array}{c}
-1 \\
2 \\
-1 \\
3 \\
3
\end{array}\right]\right\} .
$$

3. Consider the matrix

$$
A=\left[\begin{array}{ccc}
1 & 4 & -2 \\
0 & 3 & 1 \\
1 & 1 & -3 \\
2 & -1 & -7 \\
-2 & -5 & 5
\end{array}\right]
$$

(a) Find bases for the column space and row space of A and determine $\operatorname{rank}(A)$.
(b) Find a basis for the null space of A and compute its dimension.
(c) Do your answers to (a) and (b) make sense, given the size of the matrix A ?
4. Prove that for matrices U and $A, \operatorname{rank}(U A) \leq \operatorname{rank}(A)$, with equality if U is invertible.
5. (a) Show that if matrices A and B have linearly independent columns then the columns of $A B$ are also linearly independent.
(b) Show that if matrices A and B have linearly independent rows then the rows of $A B$ are also linearly independent.

