Due: Tuesday, September 25th, 2007. SHOW ALL WORK.

1. Determine whether each of the following sets of vectors is linearly independent.
(a) $\left\{\left[\begin{array}{c}4 \\ -3 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{c}-1 \\ 6 \\ -4\end{array}\right]\right\}$
(b) $\left\{\left[\begin{array}{c}1 \\ 0 \\ -1 \\ 5\end{array}\right],\left[\begin{array}{c}0 \\ -3 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{c}0 \\ -1 \\ -2 \\ -2\end{array}\right],\left[\begin{array}{c}2 \\ -4 \\ -4 \\ 9\end{array}\right]\right\}$
(c) $\left\{\left[\begin{array}{c}2 \\ -3 \\ -1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 5 \\ 4\end{array}\right],\left[\begin{array}{c}6 \\ -8 \\ 2 \\ 1\end{array}\right]\right\}$
2. Determine whether \mathbb{R}^{3} is spanned by the vectors

$$
\underline{x}_{1}=\left[\begin{array}{c}
4 \\
1 \\
-3
\end{array}\right], \quad \underline{x}_{2}=\left[\begin{array}{c}
0 \\
-2 \\
1
\end{array}\right], \quad \underline{x}_{3}=\left[\begin{array}{c}
0 \\
0 \\
-1
\end{array}\right]
$$

3. Show that $\operatorname{span}\{\underline{x}, \underline{y}\}=\operatorname{span}\{\underline{x}-\underline{y}, 2 \underline{x}+3 \underline{y}\}$ for any vectors \underline{x} and \underline{y} in \mathbb{R}^{n}, by proving the following.
(a) Prove that $\operatorname{span}\{\underline{x}-\underline{y}, 2 \underline{x}+3 \underline{y}\}$ is contained in $\operatorname{span}\{\underline{x}, \underline{y}\}$.
(b) Prove that $\operatorname{span}\{\underline{x}, \underline{y}\}$ is contained in $\operatorname{span}\{\underline{x}-\underline{y}, 2 \underline{x}+3 \underline{y}\}$.
(Hint: For both (a) and (b), you should make use of a theorem we've proved in class which states that a set spanned by vectors is a subspace, and which also relates other subspaces to this subspace.)
4. Find a basis and calculate the dimension of each of the following subspaces of \mathbb{R}^{4}.
(a) $U=\operatorname{span}\left\{\left[\begin{array}{c}1 \\ 0 \\ -1 \\ -2\end{array}\right],\left[\begin{array}{c}3 \\ 2 \\ -2 \\ 0\end{array}\right],\left[\begin{array}{c}1 \\ 2 \\ -3 \\ -2\end{array}\right]\right\}$
(b) $U=\operatorname{span}\left\{\left[\begin{array}{c}1 \\ -1 \\ 0 \\ 2\end{array}\right],\left[\begin{array}{c}-2 \\ 3 \\ 1 \\ -1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 3\end{array}\right],\left[\begin{array}{c}-3 \\ 5 \\ 2 \\ 0\end{array}\right]\right\}$
5. (a) Let $\{\underline{x}, \underline{y}, \underline{z}\}$ be a linearly independent set of vectors in \mathbb{R}^{4}. Prove that if \underline{w} is not in $\operatorname{span}\{\underline{x}, \underline{y}, \underline{z}\}$ then $\{\underline{x}, \underline{y}, \underline{z}, \underline{w}\}$ is also linearly independent.
(b) Explain why the set $\{\underline{x}, \underline{y}, \underline{z}, \underline{w}\}$ found in (a) must be a basis for \mathbb{R}^{4}.
