MEMORIAL UNIVERSITY OF NEWFOUNDLAND
DEPARTMENT OF MATHEMATICS AND STATISTICS

ASSIGNMENT 2 Mathematics 2051 FarLr 2007

Due: Tuesday, September 25th, 2007. SHOW ALL WORK.

1. Determine whether each of the following sets of vectors is linearly independent.
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2. Determine whether R? is spanned by the vectors
4 0 0
-3 1 -1

3. Show that span{z,y} = span{z —y, 2z + 3y} for any vectors z and y in R", by proving the
following.

(a) Prove that span{z —y, 2z + 3y} is contained in span{z, y}.
(b) Prove that span{z, y} is contained in span{z —y, 2z + 3y}.

(Hint: For both (a) and (b), you should make use of a theorem we’ve proved in class which
states that a set spanned by vectors is a subspace, and which also relates other subspaces to
this subspace.)

4. Find a basis and calculate the dimension of each of the following subspaces of R*.
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5. (a) Let {z,y,z} be a linearly independent set of vectors in R*. Prove that if w is not in
span{z,y,z} then {z,y,z,w} is also linearly independent.

(b) Explain why the set {z,y,z, w} found in (a) must be a basis for R*.



