MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

Assignment 1	Mathematics 2051	Fall 2007

Due: Tuesday, September 18th, 2007. SHOW ALL WORK.

1. In each case, either prove that U is a subspace of \mathbb{R}^3 , or explain why it is not.

$$\begin{array}{ll}
\text{(a)} & U = \left\{ \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \middle| & x, y \in \mathbb{R} \right\} \\
\text{(b)} & U = \left\{ \begin{bmatrix} x \\ y^2 \\ z \end{bmatrix} \middle| & x, y, z \in \mathbb{R} \right\} \\
\text{(c)} & U = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \middle| & 2x + 3y = 4z, \quad x, y, z \in \mathbb{R} \right\} \\
\text{(d)} & U = \left\{ \begin{bmatrix} x + y \\ y + z \\ z + x \end{bmatrix} \middle| & x, y, z \in \mathbb{R} \right\}
\end{array}$$

- 2. Prove that if A is an $m \times n$ matrix and U is an invertible $m \times m$ matrix then null(A) = null(UA). (*Hint: show that any element in* null(A) *must also be in* null(UA), and vice versa.)
- 3. Given the vectors

$$\underline{x} = \begin{bmatrix} 1\\3\\-7\\-2 \end{bmatrix}, \quad \underline{y} = \begin{bmatrix} 1\\1\\-3\\1 \end{bmatrix}, \quad \underline{u} = \begin{bmatrix} -6\\0\\6\\-5 \end{bmatrix}, \quad \underline{v} = \begin{bmatrix} 2\\-4\\6\\11 \end{bmatrix},$$

let $U = \operatorname{span}\{\underline{x}, \underline{y}\}\$ and determine if \underline{u} and \underline{v} are in U. If so, write that vector as the linear combination of \underline{x} and y.

 $4. \quad \text{Let}$

$$U = \left\{ \begin{bmatrix} 0 \\ x \\ y \end{bmatrix} \middle| x, y \in \mathbb{R} \right\}.$$

because by the vectors $\underline{x} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\underline{y} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$

Explain why U cannot be spanned by the vectors $\underline{x} = \begin{bmatrix} 1\\0\\2 \end{bmatrix}$ and $\underline{y} = \begin{bmatrix} -1\\3\\4 \end{bmatrix}$.