Due: Tuesday, September 18th, 2007. SHOW ALL WORK.

1. In each case, either prove that U is a subspace of \mathbb{R}^{3}, or explain why it is not.
(a) $U=\left\{\left.\left[\begin{array}{l}x \\ y \\ 1\end{array}\right] \right\rvert\, x, y \in \mathbb{R}\right\}$
(b) $U=\left\{\left.\left[\begin{array}{c}x \\ y^{2} \\ z\end{array}\right] \right\rvert\, x, y, z \in \mathbb{R}\right\}$
(c) $U=\left\{\left.\left[\begin{array}{l}x \\ y \\ z\end{array}\right] \right\rvert\, 2 x+3 y=4 z, \quad x, y, z \in \mathbb{R}\right\}$
(d) $U=\left\{\left.\left[\begin{array}{l}x+y \\ y+z \\ z+x\end{array}\right] \right\rvert\, x, y, z \in \mathbb{R}\right\}$
2. Prove that if A is an $m \times n$ matrix and U is an invertible $m \times m$ matrix then $\operatorname{null}(A)=$ $\operatorname{null}(U A)$. (Hint: show that any element in $\operatorname{null}(A)$ must also be in $\operatorname{null}(U A)$, and vice versa.)
3. Given the vectors

$$
\underline{x}=\left[\begin{array}{c}
1 \\
3 \\
-7 \\
-2
\end{array}\right], \quad \underline{y}=\left[\begin{array}{c}
1 \\
1 \\
-3 \\
1
\end{array}\right], \quad \underline{u}=\left[\begin{array}{c}
-6 \\
0 \\
6 \\
-5
\end{array}\right], \quad \underline{v}=\left[\begin{array}{c}
2 \\
-4 \\
6 \\
11
\end{array}\right],
$$

let $U=\operatorname{span}\{\underline{x}, \underline{y}\}$ and determine if \underline{u} and \underline{v} are in U. If so, write that vector as the linear combination of \underline{x} and \underline{y}.
4. Let

$$
U=\left\{\left.\left[\begin{array}{l}
0 \\
x \\
y
\end{array}\right] \right\rvert\, \quad x, y \in \mathbb{R}\right\} .
$$

Explain why U cannot be spanned by the vectors $\underline{x}=\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right]$ and $\underline{y}=\left[\begin{array}{c}-1 \\ 3 \\ 4\end{array}\right]$.

