MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

For practice only. Not to be submitted.

1. Find the eigenvalues and corresponding eigenspaces of each of the following matrices.
(a) $A=\left[\begin{array}{ll}2 & -1 \\ 5 & -4\end{array}\right]$
(b) $A=\left[\begin{array}{ll}3 & 2 \\ 6 & 4\end{array}\right]$
(c) $A=\left[\begin{array}{ccc}7 & 0 & -4 \\ 0 & 5 & 0 \\ 5 & 0 & -2\end{array}\right]$
(d) $A=\left[\begin{array}{ccc}2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & -1 & 2\end{array}\right]$
(e) $A=\left[\begin{array}{ccc}2 & 1 & 1 \\ 0 & 3 & 0 \\ 1 & -1 & 2\end{array}\right]$
2. Let \mathbf{x} be an eigenvector of an invertible matrix A, with corresponding eigenvalue λ. Prove that \mathbf{x} is also an eigenvector of A^{-1}, and determine the corresponding eigenvalue, μ, in terms of λ.
