MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

For practice only. Not to be submitted.

1. Use Gaussian elimination to determine if each of the following matrices is invertible. If so, show its inverse.
(a) $A=\left[\begin{array}{ccc}4 & -8 & 0 \\ 12 & -23 & 0 \\ 0 & 20 & 4\end{array}\right]$
(b) $B=\left[\begin{array}{ccc}1 & 0 & 2 \\ 3 & 1 & 0 \\ 1 & -1 & 8\end{array}\right]$
(c) $C=\left[\begin{array}{cccc}1 & 0 & 3 & -2 \\ -4 & 1 & -8 & 8 \\ 6 & 0 & 19 & -12 \\ 0 & -2 & -8 & 1\end{array}\right]$
2. (a) Solve the system

$$
\left.\begin{array}{rl}
x-3 z & =1 \\
5 x+\frac{1}{3} y-15 z & =3 \\
-x+y+4 z & =-6
\end{array}\right\}
$$

by writing it in the form $A \mathbf{x}=\mathbf{b}$ and computing $\mathbf{x}=A^{-1} \mathbf{b}$.
(b) Briefly explain why the method of part (a) would not work for the system

$$
\left.\begin{array}{rl}
x-3 z+4 w & =1 \\
5 x+\frac{1}{3} y-15 z-w & =3 \\
-x+y+4 z-7 w & =-6
\end{array}\right\}
$$

3. Express $A=\left[\begin{array}{ll}4 & -6 \\ 1 & -1\end{array}\right]$ as a product of elementary matrices.
4. Solve the system

$$
\left.\begin{array}{rl}
5 x+2 y-z & =12 \\
x+4 z & =-13 \\
-2 x+z & =-1
\end{array}\right\}
$$

by first carrying out an $L U$-factorization of the matrix of coefficients A.

