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1. Solve each of the following homogeneous systems of equations using Gaussian elimination
and back-substitution. If a solution exists, express it as a vector or as a linear combination
of vectors.

(a)
a − 2b − 2c = 0

−4a + 8b + 6c = 0

}

(b)

x1 − 3x2 + 4x4 = 0
−x1 + x2 + 4x3 − 2x4 = 0
x1 − 6x3 + x4 = 0
2x1 − 5x2 − 2x3 + 7x4 = 0


2. Using your answers to #1, show that solutions to the following systems of equations can be

written in the form x = xp + xh, where xp is a particular solution of the given system and
xh is a solution of the corresponding homogeneous system.

(a)
a − 2b − 2c = −5

−4a + 8b + 6c = 9

}

(b)

x1 − 3x2 + 4x4 = 6
−x1 + x2 + 4x3 − 2x4 = −8
x1 − 6x3 + x4 = 9
2x1 − 5x2 − 2x3 + 7x4 = 13


3. Use Gaussian elimination and back-substitution to determine whether each of the following

sets of vectors is linearly independent or linearly dependent.

(a) v1 =

10
0

, v2 =

 3
−4
−1

, v3 =

 5
−3
−1



(b) v1 =


1
1
1
2
2

, v2 =


1
7
−5
−6
0

, v3 =


2
5
−1
0
3



(c) v1 =


1
0
−1
−1

, v2 =


2
4
0
0

, v3 =


3
4
1
−1

, v4 =


6
4
0
−4


PLEASE TURN OVER



–2–

4. Prove that if A and B are suitably-sized matrices with linearly independent columns then
their product AB also has linearly independent columns.


