MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

Section 2.1	Math 2050 Worksheet	WINTER	2013
SECTION 2.1	Math 2000 Worksheet	WINTER	2015

For practice only. Not to be submitted.

- 1. Let vectors $\mathbf{u} = \begin{bmatrix} 4 \\ -1 \\ -1 \\ 7 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 2 \\ 0 \\ 2 \\ 0 \end{bmatrix}$. Let A be the matrix whose columns are \mathbf{u} and \mathbf{v} so $A = \begin{bmatrix} \mathbf{u} & \mathbf{v} \\ \downarrow & \downarrow \\ \end{bmatrix}$ and let B be the matrix whose rows are the transposes of \mathbf{u} and \mathbf{v} , so $B = \begin{bmatrix} \mathbf{u}^T & \rightarrow \\ \mathbf{v}^T & \rightarrow \end{bmatrix}$.
 - (a) What is the size of A? What is the size of B?
 - (b) Identify the elements a_{11} , a_{33} , a_{42} , b_{12} , b_{21} and b_{42} , if possible.
- 2. Write the system of equations

$$4w - 3x - y + z = 5$$
$$6x + 2z = -3$$
$$w + 5x - y - \frac{7}{3}z = 0$$

as a matrix equation of the form $A\mathbf{x} = \mathbf{b}$. (You do <u>not</u> need to solve for w, x, y or z.)

- 3. Solve the equation $A 4X = \frac{1}{3}B^T$ where $A = \begin{bmatrix} 2 & 0 & -4 \\ -1 & -1 & 7 \\ 0 & 8 & 6 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 1 & 3 \\ -2 & 6 & 0 \\ 0 & -3 & 9 \end{bmatrix}$.
- 4. Given $A = \begin{bmatrix} 1 & 4 \\ -5 & 6 \\ 1 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 4 & 0 & -4 \\ 3 & -2 & 1 \\ -1 & -2 & 0 \end{bmatrix}$ and $C = \begin{bmatrix} 6 & 1 & 0 & -2 \\ 1 & \frac{3}{2} & 0 & -8 \end{bmatrix}$, compute each of the

following products, if possible. If a product does not exist, explain why not.

- (a) AB (b) BA (c) A^TB
- (d) AC (e) $C^T A^T$ (f) B^2
- (g) C^2 (h) BAC (i) ACA
- 5. Give an example of two non-zero 2×2 matrices A and B for which AB = 0.
- 6. Express $\begin{bmatrix} -10\\ 13\\ -10 \end{bmatrix}$ as a linear combination of the columns of $A = \begin{bmatrix} 4 & -1 & 0\\ 0 & 1 & 3\\ 0 & 0 & -2 \end{bmatrix}$.