MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

SECTION 2.1

Math 2050 Worksheet
Winter 2013

For practice only. Not to be submitted.

1. Let vectors $\mathbf{u}=\left[\begin{array}{c}4 \\ -1 \\ -1 \\ 7\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{l}2 \\ 0 \\ 2 \\ 0\end{array}\right]$. Let A be the matrix whose columns are \mathbf{u} and \mathbf{v} so $A=\left[\begin{array}{ll}\mathbf{u} & \mathbf{v} \\ \downarrow & \downarrow\end{array}\right]$ and let B be the matrix whose rows are the tranposes of \mathbf{u} and \mathbf{v}, so $B=\left[\begin{array}{ll}\mathbf{u}^{T} & \rightarrow \\ \mathbf{v}^{T} & \rightarrow\end{array}\right]$.
(a) What is the size of A ? What is the size of B ?
(b) Identify the elements $a_{11}, a_{33}, a_{42}, b_{12}, b_{21}$ and b_{42}, if possible.
2. Write the system of equations

$$
\begin{aligned}
4 w-3 x-y+z & =5 \\
6 x+2 z & =-3 \\
-w+5 x-y-\frac{7}{3} z & =0
\end{aligned}
$$

as a matrix equation of the form $A \mathbf{x}=\mathbf{b}$. (You do not need to solve for w, x, y or z.)
3. Solve the equation $A-4 X=\frac{1}{3} B^{T}$ where $A=\left[\begin{array}{ccc}2 & 0 & -4 \\ -1 & -1 & 7 \\ 0 & 8 & 6\end{array}\right]$ and $B=\left[\begin{array}{ccc}2 & 1 & 3 \\ -2 & 6 & 0 \\ 0 & -3 & 9\end{array}\right]$.
4. Given $A=\left[\begin{array}{cc}1 & 4 \\ -5 & 6 \\ 1 & 2\end{array}\right], B=\left[\begin{array}{ccc}4 & 0 & -4 \\ 3 & -2 & 1 \\ -1 & -2 & 0\end{array}\right]$ and $C=\left[\begin{array}{cccc}6 & 1 & 0 & -2 \\ 1 & \frac{3}{2} & 0 & -8\end{array}\right]$, compute each of the following products, if possible. If a product does not exist, explain why not.
(a) $A B$
(b) $B A$
(c) $A^{T} B$
(d) $A C$
(e) $C^{T} A^{T}$
(f) $\quad B^{2}$
(g) C^{2}
(h) $B A C$
(i) $A C A$
5. Give an example of two non-zero 2×2 matrices A and B for which $A B=\mathbf{0}$.
6. Express $\left[\begin{array}{c}-10 \\ 13 \\ -10\end{array}\right]$ as a linear combination of the columns of $A=\left[\begin{array}{ccc}4 & -1 & 0 \\ 0 & 1 & 3 \\ 0 & 0 & -2\end{array}\right]$.

