MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

SECTION 1.5

Math 2050 Worksheet
Winter 2018

For practice only. Not to be submitted.

1. Find a vector of length 4 in the same direction as $\mathbf{u}=\left[\begin{array}{c}4 \\ -1 \\ -1 \\ 6\end{array}\right]$.
2. Find the angle (in radians and degrees, to one decimal place) between $\mathbf{u}=\left[\begin{array}{c}4 \\ 2 \\ 0 \\ 2 \\ -1\end{array}\right]$ and

$$
\mathbf{v}=\left[\begin{array}{c}
-3 \\
9 \\
1 \\
0 \\
3
\end{array}\right]
$$

3. Determine whether each of the following sets of vectors is linearly independent or linearly dependent.
(a) $\mathbf{u}=\left[\begin{array}{c}-4 \\ 1\end{array}\right], \mathbf{v}=\left[\begin{array}{l}6 \\ 7\end{array}\right]$
(b) $\mathbf{u}=\left[\begin{array}{c}2 \\ 5 \\ -1\end{array}\right], \mathbf{v}=\left[\begin{array}{c}0 \\ -1 \\ -1\end{array}\right], \mathbf{w}=\left[\begin{array}{c}3 \\ 2 \\ -4\end{array}\right]$
(c) $\mathbf{u}=\left[\begin{array}{c}2 \\ 5 \\ -1\end{array}\right], \mathbf{v}=\left[\begin{array}{c}0 \\ -1 \\ -1\end{array}\right], \mathbf{w}=\left[\begin{array}{c}2 \\ 2 \\ -4\end{array}\right]$
(d) $\mathbf{u}=\left[\begin{array}{c}2 \\ 5 \\ -1\end{array}\right], \mathbf{v}=\left[\begin{array}{c}0 \\ -1 \\ -1\end{array}\right], \mathbf{w}=\left[\begin{array}{c}3 \\ 2 \\ -4\end{array}\right], \mathbf{x}=\left[\begin{array}{c}-4 \\ 0 \\ 6\end{array}\right]$
(e) $\mathbf{u}_{1}=\left[\begin{array}{l}5 \\ 0 \\ 1 \\ 3\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{c}1 \\ 5 \\ -1 \\ -2\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{c}-3 \\ 6 \\ -1 \\ 0\end{array}\right], \mathbf{u}_{4}=\left[\begin{array}{c}2 \\ -2 \\ 7 \\ 0\end{array}\right]$
4. Prove that if \mathbf{u} is a vector in \mathbb{R}^{n} which is orthogonal to every vector in \mathbb{R}^{n} then \mathbf{u} must be the zero vector.
