# MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS 

## SECTION 1.3

Math 2050 Worksheet
Winter 2018

For practice only. Not to be submitted.

1. Given $\mathbf{u}=\left[\begin{array}{c}4 \\ -1 \\ 1\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{c}1 \\ 0 \\ -3\end{array}\right]$, find all values of the scalar $k$ such that $2 \mathbf{u}-k \mathbf{v}$ is orthogonal to
(a) $\mathbf{u}$
(b) $\mathbf{v}$
(c) $\mathbf{u} \times \mathbf{v}$
2. Let $\mathbf{u}$ and $\mathbf{v}$ be non-orthogonal vectors. Find an expression for the scalar $k$ such that $k \mathbf{u}+\mathbf{v}$ is orthogonal to $\mathbf{v}$.
3. Find an equation of the plane spanned by the vectors $\mathbf{u}=\left[\begin{array}{l}2 \\ 4 \\ 5\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{c}-1 \\ 3 \\ 0\end{array}\right]$.
4. Find an equation of the plane containing the points $A(0,4,-1), B(6,2,2)$ and $C(1,-1,-3)$.
5. Find vector and parametric equations of the line through the points $P(1,6,0)$ and $Q(5,-3,0)$.
6. Show that the lines with vector equations

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1 \\
4 \\
9
\end{array}\right]+t\left[\begin{array}{c}
-3 \\
3 \\
2
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
16 \\
-11 \\
-1
\end{array}\right]+t\left[\begin{array}{c}
6 \\
-6 \\
-4
\end{array}\right]
$$

are the same.
7. Determine whether the lines with vector equations

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
4 \\
0 \\
0
\end{array}\right]+t\left[\begin{array}{c}
2 \\
1 \\
-4
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
2 \\
-3 \\
4
\end{array}\right]+t\left[\begin{array}{c}
6 \\
3 \\
-12
\end{array}\right]
$$

intersect. If so, find their point of intersection.
8. Determine whether the plane with equation $x-6 y+5 z=10$ and the line with vector equation

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
0 \\
3 \\
-1
\end{array}\right]+t\left[\begin{array}{c}
-8 \\
3 \\
3
\end{array}\right]
$$

intersect. If so, find their point of intersection.

