MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

SECTION 1.1

For practice only. Not to be submitted.

1. Given a point $B=(4,-4)$, find the point A and sketch the vector $\overrightarrow{A B}$ such that
(a) $\overrightarrow{A B}=\left[\begin{array}{c}3 \\ -7\end{array}\right]$
(b) $\overrightarrow{A B}=\left[\begin{array}{l}2 \\ 0\end{array}\right]$
(c) $\overrightarrow{A B}=\left[\begin{array}{l}-1 \\ -1\end{array}\right]$
(d) $\overrightarrow{A B}=\left[\begin{array}{c}4 \\ -4\end{array}\right]$
2. Simplify each of the following vectors.
(a) $\left[\begin{array}{l}4 \\ 1\end{array}\right]+3\left[\begin{array}{c}-2 \\ 0\end{array}\right]-\left[\begin{array}{c}-6 \\ 7\end{array}\right]$
(b) $6\left[\begin{array}{c}-3 \\ 3 \\ -7\end{array}\right]-4\left[\begin{array}{c}0 \\ 5 \\ -1\end{array}\right]$
(c) $-k\left[\begin{array}{c}-4 \\ 0 \\ 1\end{array}\right]+3\left[\begin{array}{c}k \\ 1 \\ -2\end{array}\right]$
3. Determine whether $\left[\begin{array}{l}1 \\ 6\end{array}\right]$ can be expressed as a linear combination of
(a) $\left[\begin{array}{l}0 \\ 1\end{array}\right]$ and $\left[\begin{array}{l}2 \\ 9\end{array}\right]$
(b) $\left[\begin{array}{l}6 \\ 4\end{array}\right]$ and $\left[\begin{array}{c}20 \\ -8\end{array}\right]$
4. Determine whether $\left[\begin{array}{c}-7 \\ 0 \\ 6\end{array}\right]$ can be expressed as a linear combination of
(a) $\left[\begin{array}{l}4 \\ 1 \\ 3\end{array}\right],\left[\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right]$ and $\left[\begin{array}{c}6 \\ 0 \\ -2\end{array}\right]$
(b) $\left[\begin{array}{c}3 \\ -4 \\ 3\end{array}\right]$ and $\left[\begin{array}{c}4 \\ -3 \\ 2\end{array}\right]$
(c) $\left[\begin{array}{c}1 \\ -5 \\ -3\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 7 \\ 3\end{array}\right]$
5. (a) Let \mathbf{u} and \mathbf{v} be vectors. Show that if \mathbf{w} is a linear combination of \mathbf{u} and \mathbf{v} then it must also be a linear combination of $5 \mathbf{u}$ and $-\mathbf{v}$.
(b) Let \mathbf{u} and \mathbf{v} be vectors. Show that if \mathbf{w} is a linear combination of \mathbf{u} and \mathbf{v} then it must also be a linear combination of $k \mathbf{u}$ and $\ell \mathbf{v}$ for any non-zero scalars k and ℓ.
6. Prove that vectors \mathbf{u} and \mathbf{v} are parallel if and only if there is a non-trivial linear combination of \mathbf{u} and \mathbf{v} equal to the zero vector $\mathbf{0}$. (By a "non-trivial" linear combination, we mean that there exist scalars a and b not equal to zero such that $a \mathbf{u}+b \mathbf{v}=\mathbf{0}$.) In other words, prove each of the following:
(a) If \mathbf{u} and \mathbf{v} are parallel, then there is a non-trivial combination of \mathbf{u} and \mathbf{v} equal to $\mathbf{0}$.
(b) If there is a non-trivial combination of \mathbf{u} and \mathbf{v} equal to $\mathbf{0}$, then \mathbf{u} and \mathbf{v} are parallel.
