MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

Section 1.1

Math 2050 Worksheet

WINTER 2018

For practice only. Not to be submitted.

1. Given a point B = (4, -4), find the point A and sketch the vector \overrightarrow{AB} such that

(a)
$$\overrightarrow{AB} = \begin{bmatrix} 3\\ -7 \end{bmatrix}$$

(b) $\overrightarrow{AB} = \begin{bmatrix} 2\\ 0 \end{bmatrix}$
(c) $\overrightarrow{AB} = \begin{bmatrix} -1\\ -1 \end{bmatrix}$
(d) $\overrightarrow{AB} = \begin{bmatrix} 4\\ -4 \end{bmatrix}$

2. Simplify each of the following vectors.

(a)
$$\begin{bmatrix} 4\\1 \end{bmatrix} + 3 \begin{bmatrix} -2\\0 \end{bmatrix} - \begin{bmatrix} -6\\7 \end{bmatrix}$$

(b) $6 \begin{bmatrix} -3\\3\\-7 \end{bmatrix} - 4 \begin{bmatrix} 0\\5\\-1 \end{bmatrix}$
(c) $-k \begin{bmatrix} -4\\0\\1 \end{bmatrix} + 3 \begin{bmatrix} k\\1\\-2 \end{bmatrix}$

- 3. Determine whether $\begin{bmatrix} 1\\6 \end{bmatrix}$ can be expressed as a linear combination of (a) $\begin{bmatrix} 0\\1 \end{bmatrix}$ and $\begin{bmatrix} 2\\9 \end{bmatrix}$ (b) $\begin{bmatrix} 6\\4 \end{bmatrix}$ and $\begin{bmatrix} 20\\-8 \end{bmatrix}$
- 4. Determine whether $\begin{bmatrix} -7\\0\\6 \end{bmatrix}$ can be expressed as a linear combination of

(a)
$$\begin{bmatrix} 4\\1\\3 \end{bmatrix}$$
, $\begin{bmatrix} -1\\1\\1 \end{bmatrix}$ and $\begin{bmatrix} 6\\0\\-2 \end{bmatrix}$ (b) $\begin{bmatrix} 3\\-4\\3 \end{bmatrix}$ and $\begin{bmatrix} 4\\-3\\2 \end{bmatrix}$
(c) $\begin{bmatrix} 1\\-5\\-3 \end{bmatrix}$ and $\begin{bmatrix} 0\\7\\3 \end{bmatrix}$

- 5. (a) Let \mathbf{u} and \mathbf{v} be vectors. Show that if \mathbf{w} is a linear combination of \mathbf{u} and \mathbf{v} then it must also be a linear combination of $5\mathbf{u}$ and $-\mathbf{v}$.
 - (b) Let **u** and **v** be vectors. Show that if **w** is a linear combination of **u** and **v** then it must also be a linear combination of $k\mathbf{u}$ and $\ell\mathbf{v}$ for any non-zero scalars k and ℓ .
- 6. Prove that vectors **u** and **v** are parallel *if and only if* there is a non-trivial linear combination of **u** and **v** equal to the zero vector **0**. (By a "non-trivial" linear combination, we mean that there exist scalars *a* and *b* not equal to zero such that $a\mathbf{u} + b\mathbf{v} = \mathbf{0}$.) In other words, prove each of the following:
 - (a) If \mathbf{u} and \mathbf{v} are parallel, then there is a non-trivial combination of \mathbf{u} and \mathbf{v} equal to $\mathbf{0}$.
 - (b) If there is a non-trivial combination of \mathbf{u} and \mathbf{v} equal to $\mathbf{0}$, then \mathbf{u} and \mathbf{v} are parallel.