Name

MUN Number
[6] 1. (a) Solve the following homogeneous system using Gaussian elimination. If a solution exists, express it as a linear combination of vectors.

$$
\left.\begin{array}{r}
3 x-y-2 z=0 \\
-x+2 y-6 z=0 \\
x-y+2 z=0
\end{array}\right\}
$$

[2] (b) Given that $\mathbf{x}_{p}=\left[\begin{array}{c}2 \\ 1 \\ -1\end{array}\right]$ is a particular solution to the system

$$
\left.\begin{array}{rl}
3 x-y-2 z & =7 \\
-x+2 y-6 z & =6 \\
x-y+2 z & =-1
\end{array}\right\}
$$

use your answer to part (a) to write a general solution as a sum of \mathbf{x}_{p} and \mathbf{x}_{h}, the solution to the corresponding homogeneous system.
[2] (c) Using your answer to part (a), deduce whether the vectors $\mathbf{v}_{1}=\left[\begin{array}{c}3 \\ -1 \\ 1\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}-1 \\ 2 \\ -1\end{array}\right]$ and $\mathbf{v}_{3}=\left[\begin{array}{c}-2 \\ -6 \\ 2\end{array}\right]$ are linearly independent or linearly dependent. Explain your answer.
[6] 2. Find conditions on k such that the following system has no solutions.

$$
\left.\begin{array}{rl}
x+y & =0 \\
2 x+3 y & =k \\
-4 x+k y & =5
\end{array}\right\}
$$

[12] 3. Let $A=\left[\begin{array}{cc}4 & -1 \\ 0 & 2\end{array}\right]$ and $B=\left[\begin{array}{ccc}1 & -3 & -2 \\ 5 & 0 & 3\end{array}\right]$. Evaluate each of the following, if possible:

$$
A+B, \quad A+A^{T}, \quad A B, \quad B A, \quad A^{2}, \quad B^{2}
$$

If an expression cannot be evaluated, explain why not.
[6] 4. (a) Use Gaussian elimination to find the inverse of the matrix $A=\left[\begin{array}{ccc}0 & -5 & 0 \\ 1 & 0 & -3 \\ 2 & 0 & -5\end{array}\right]$.
[6] (b) Write A as a product of elementary matrices.

