MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

	TEST 1	MATH 2050	February 14th, 2018
	Name	MUN Numbe	r
1.	Consider the vectors $\mathbf{u} = \begin{bmatrix} 2 \\ -3 \\ 6 \end{bmatrix}$, \mathbf{v}	$= \begin{bmatrix} 1\\0\\2 \end{bmatrix}, \text{ and } \mathbf{w} = \begin{bmatrix} 1\\6\\-2 \end{bmatrix}.$	

[3] (a) Give a unit vector in the opposite direction to \mathbf{u} .

[3] (b) Find the <u>cosine</u> of the angle between \mathbf{u} and \mathbf{v} . (You do not need to find the angle itself.)

[5] (c) Determine whether **w** lies in the plane spanned by **u** and **v**. (You do <u>not</u> need to find the equation of this plane.)

[3] (d) Find a normal to the plane spanned by \mathbf{v} and \mathbf{w} .

- 2. Let π be the plane with equation x + y 2z = 4.
- [3] (a) Give the vector equation of the line ℓ perpendicular to π which passes through the point (1,3,6).

[5] (b) Find the point of intersection Q of the plane π and the line ℓ .

[6] (c) Find the distance from the point P(-4, 0, 2) to π .

[6] 3. Determine whether the vectors

$$\mathbf{u} = \begin{bmatrix} 1\\0\\-5\\-4 \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} -3\\-5\\0\\8 \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} -1\\-1\\2\\0 \end{bmatrix}$$

are linearly independent or linearly dependent. If they are linearly dependent, express \mathbf{w} as a linear combination of \mathbf{u} and \mathbf{v} .

[6] 4. Consider two vectors \mathbf{u} and \mathbf{v} .

- (a) Define what it means for \mathbf{u} and \mathbf{v} to be **orthogonal**.
- (b) Define what it means for \mathbf{u} and \mathbf{v} to be **linearly independent**.
- (c) Suppose \mathbf{u} and \mathbf{v} are orthogonal non-zero vectors. Prove that \mathbf{u} and \mathbf{v} must be linearly independent.