1. Consider the vectors $\mathbf{u}=\left[\begin{array}{c}2 \\ -3 \\ 6\end{array}\right], \mathbf{v}=\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right]$, and $\mathbf{w}=\left[\begin{array}{c}1 \\ 6 \\ -2\end{array}\right]$.
[3] (a) Give a unit vector in the opposite direction to \mathbf{u}.
[3] (b) Find the cosine of the angle between \mathbf{u} and \mathbf{v}. (You do not need to find the angle itself.)
[5] (c) Determine whether \mathbf{w} lies in the plane spanned by \mathbf{u} and \mathbf{v}. (You do not need to find the equation of this plane.)
[3] (d) Find a normal to the plane spanned by \mathbf{v} and \mathbf{w}.
2. Let π be the plane with equation $x+y-2 z=4$.
[3] (a) Give the vector equation of the line ℓ perpendicular to π which passes through the point $(1,3,6)$.
[5] (b) Find the point of intersection Q of the plane π and the line ℓ.
[6] (c) Find the distance from the point $P(-4,0,2)$ to π.
[6] 3. Determine whether the vectors

$$
\mathbf{u}=\left[\begin{array}{c}
1 \\
0 \\
-5 \\
-4
\end{array}\right], \quad \mathbf{v}=\left[\begin{array}{c}
-3 \\
-5 \\
0 \\
8
\end{array}\right], \quad \mathbf{w}=\left[\begin{array}{c}
-1 \\
-1 \\
2 \\
0
\end{array}\right]
$$

are linearly independent or linearly dependent. If they are linearly dependent, express \mathbf{w} as a linear combination of \mathbf{u} and \mathbf{v}.
[6] 4. Consider two vectors \mathbf{u} and \mathbf{v}.
(a) Define what it means for \mathbf{u} and \mathbf{v} to be orthogonal.
(b) Define what it means for \mathbf{u} and \mathbf{v} to be linearly independent.
(c) Suppose \mathbf{u} and \mathbf{v} are orthogonal non-zero vectors. Prove that \mathbf{u} and \mathbf{v} must be linearly independent.

