MEMORIAL UNIVERSITY OF NEWFOUNDLAND
 DEPARTMENT OF MATHEMATICS AND STATISTICS

Assignment 4
MATH 2050
Winter 2018

SOLUTIONS
[10] 1. (a) First,

$$
A B=\left[\begin{array}{ccc}
3 & 0 & -2 \\
5 & -5 & 1 \\
0 & -2 & 3
\end{array}\right]\left[\begin{array}{cc}
4 & 3 \\
-2 & 0 \\
7 & -1
\end{array}\right]=\left[\begin{array}{cc}
-2 & 11 \\
37 & 14 \\
25 & -3
\end{array}\right]
$$

However, we cannot compute $B A$ because B has 2 columns while A has 3 rows.
Next,

$$
B^{T} A=\left[\begin{array}{ccc}
4 & -2 & 7 \\
3 & 0 & -1
\end{array}\right]\left[\begin{array}{ccc}
3 & 0 & -2 \\
5 & -5 & 1 \\
0 & -2 & 3
\end{array}\right]=\left[\begin{array}{ccc}
2 & -4 & 11 \\
9 & 2 & -9
\end{array}\right]
$$

Next,

$$
A^{2}=A A=\left[\begin{array}{ccc}
3 & 0 & -2 \\
5 & -5 & 1 \\
0 & -2 & 3
\end{array}\right]\left[\begin{array}{ccc}
3 & 0 & -2 \\
5 & -5 & 1 \\
0 & -2 & 3
\end{array}\right]=\left[\begin{array}{ccc}
9 & 4 & -12 \\
-10 & 23 & -12 \\
-10 & 4 & 7
\end{array}\right] .
$$

We cannot compute $B^{2}=B B$ because the first matrix in the product has 2 columns, while the second matrix has 3 rows.
Finally,

$$
B^{T} B=\left[\begin{array}{ccc}
4 & -2 & 7 \\
3 & 0 & -1
\end{array}\right]\left[\begin{array}{cc}
4 & 3 \\
-2 & 0 \\
7 & -1
\end{array}\right]=\left[\begin{array}{cc}
69 & 5 \\
5 & 10
\end{array}\right]
$$

[3] (b) We have

$$
\begin{aligned}
\frac{1}{4} X-2 A & =C^{T} \\
\frac{1}{4} X-2\left[\begin{array}{ccc}
3 & 0 & -2 \\
5 & -5 & 1 \\
0 & -2 & 3
\end{array}\right] & =\left[\begin{array}{ccc}
-4 & -1 & 4 \\
-6 & 13 & 2 \\
0 & 4 & -5
\end{array}\right] \\
\frac{1}{4} X-\left[\begin{array}{ccc}
6 & 0 & -4 \\
10 & -10 & 2 \\
0 & -4 & 6
\end{array}\right] & =\left[\begin{array}{ccc}
-4 & -6 & 0 \\
-1 & 13 & 2 \\
4 & 2 & -5
\end{array}\right] \\
\frac{1}{4} X & =\left[\begin{array}{ccc}
2 & -6 & -4 \\
9 & 3 & 6 \\
4 & -2 & 1
\end{array}\right] \\
X & =\left[\begin{array}{ccc}
8 & -24 & -16 \\
36 & 12 & 24 \\
16 & -8 & 4
\end{array}\right]
\end{aligned}
$$

[4] 2. Since A commutes with $A+B$, we know that

$$
A(A+B)=(A+B) A
$$

Then, by the distributive property,

$$
\begin{aligned}
A^{2}+A B & =A^{2}+B A \\
A B & =B A .
\end{aligned}
$$

Hence A commutes with B.
[2] 3. (a) The matrix equation is equivalent to

$$
\begin{aligned}
& 3 x_{1}-2 x_{2}=-1 \\
& 9 x_{1}+6 x_{2}=3
\end{aligned}
$$

[5] (b) Observe that

$$
a d-b c=18-(-9)=27
$$

so A is invertible. Thus we have

$$
A^{-1}=\frac{1}{27}\left[\begin{array}{cc}
6 & 1 \\
-9 & 3
\end{array}\right]=\left[\begin{array}{cc}
\frac{2}{9} & \frac{1}{27} \\
-\frac{1}{3} & \frac{1}{9}
\end{array}\right] .
$$

Thus

$$
\mathbf{x}=A^{-1} \mathbf{b}=\frac{1}{27}\left[\begin{array}{cc}
6 & 1 \\
-9 & 3
\end{array}\right]\left[\begin{array}{c}
-1 \\
3
\end{array}\right]=\frac{1}{27}\left[\begin{array}{c}
-3 \\
18
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{9} \\
\frac{2}{3}
\end{array}\right] .
$$

[3]
(c) Since

$$
\left[\begin{array}{cc}
3 & -1 \\
9 & 6
\end{array}\right]\left[\begin{array}{c}
-\frac{1}{9} \\
\frac{2}{3}
\end{array}\right]=\left[\begin{array}{c}
-1 \\
3
\end{array}\right]
$$

we can write

$$
\left[\begin{array}{c}
-1 \\
3
\end{array}\right]=-\frac{1}{9}\left[\begin{array}{l}
3 \\
9
\end{array}\right]+\frac{2}{3}\left[\begin{array}{c}
-1 \\
6
\end{array}\right]
$$

(d) Now observe that

$$
\begin{equation*}
a d-b c=18-18=0, \tag{4}
\end{equation*}
$$

so Z is not invertible. However, the corresponding system of equations is now

$$
\begin{aligned}
3 x_{1}-2 x_{2} & =-1 \\
-9 x_{1}+6 x_{2} & =3 .
\end{aligned}
$$

From the first equation, we can see that $2 x_{2}=3 x_{1}+1$. Substituting this into the second equation, we have

$$
-9 x_{1}+3\left(2 x_{2}\right)=3 \quad \Longrightarrow \quad-9 x_{1}+3\left(3 x_{1}+1\right)=3 \quad \Longrightarrow \quad 3=3
$$

Since this is true for any value of x_{1}, we can (for example) choose $x_{1}=1$ and see that $2 x_{2}=4$ so $x_{2}=2$. Hence

$$
\left[\begin{array}{c}
-1 \\
3
\end{array}\right]=\left[\begin{array}{c}
3 \\
-9
\end{array}\right]+2\left[\begin{array}{c}
-2 \\
6
\end{array}\right] .
$$

[5] 4. We have

$$
\begin{aligned}
A X+4 B & =C \\
A X & =C-4 B \\
X & =A^{-1}(C-4 B),
\end{aligned}
$$

if A is invertible. In fact for A we can see that

$$
a d-b c=0-(-3)=3,
$$

so it is invertible and

$$
A^{-1}=\frac{1}{3}\left[\begin{array}{cc}
0 & -1 \\
3 & 4
\end{array}\right] .
$$

Thus

$$
\begin{aligned}
X & =\frac{1}{3}\left[\begin{array}{cc}
0 & -1 \\
3 & 4
\end{array}\right]\left(\left[\begin{array}{ccc}
3 & 4 & 3 \\
-9 & 7 & 1
\end{array}\right]-\left[\begin{array}{ccc}
-8 & 4 & 28 \\
0 & 4 & -20
\end{array}\right]\right) \\
& =\frac{1}{3}\left[\begin{array}{cc}
0 & -1 \\
3 & 4
\end{array}\right]\left[\begin{array}{ccc}
11 & 0 & -25 \\
-9 & 3 & 21
\end{array}\right] \\
& =\frac{1}{3}\left[\begin{array}{ccc}
9 & -3 & -21 \\
-3 & 12 & 9
\end{array}\right] \\
& =\left[\begin{array}{ccc}
3 & -1 & -7 \\
-1 & 4 & 3
\end{array}\right] .
\end{aligned}
$$

[4] 5. Since B is invertible, we can left-multiply both sides of the equation by B^{-1} to get

$$
\begin{aligned}
B^{-1} B A^{-1} X^{T} B & =B^{-1} B A^{T} \\
I A^{-1} X^{T} B & =I A^{T} \\
A^{-1} X^{T} B & =A^{T} .
\end{aligned}
$$

Likewise, we can left-multiply both sides of the equation by A to get

$$
\begin{aligned}
A A^{-1} X^{T} B & =A A^{T} \\
I X^{T} B & =A A^{T} \\
X^{T} B & =A A^{T} .
\end{aligned}
$$

We can right-multiply both sides of the equation by B^{-1} to get

$$
\begin{aligned}
X^{T} B B^{-1} & =A A^{T} B^{-1} \\
X^{T} I & =A A^{T} B^{-1} \\
X^{T} & =A A^{T} B^{-1} .
\end{aligned}
$$

Finally, using the properties of the matrix transpose,

$$
\begin{aligned}
X & =\left(A A^{T} B^{-1}\right)^{T} \\
& =\left(B^{-1}\right)^{T}\left(A^{T}\right)^{T} A^{T} \\
& =\left(B^{-1}\right)^{T} A A^{T} .
\end{aligned}
$$

(Here we could alternatively write $\left(B^{-1}\right)^{T}=\left(B^{T}\right)^{-1}$.)

