MEMORIAL UNIVERSITY OF NEWFOUNDLAND

DEPARTMENT OF MATHEMATICS AND STATISTICS

SOLUTIONS

[3] 1. (a) We have

$$
\operatorname{proj}_{\mathbf{v}} \mathbf{u}=\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v}=\frac{5}{18}\left[\begin{array}{c}
4 \\
1 \\
-1
\end{array}\right]
$$

[3]
(b) We have

$$
\operatorname{proj}_{\mathbf{u}} \mathbf{v}=\frac{\mathbf{v} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u}=\frac{5}{13}\left[\begin{array}{c}
2 \\
-3 \\
0
\end{array}\right]
$$

[5] 2. (a) First we need two vectors which lie in π. Since $x=2 y-3 z$, we can write any vector in π in the form

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
2 y-3 z \\
y \\
z
\end{array}\right]=y\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]+z\left[\begin{array}{c}
-3 \\
0 \\
1
\end{array}\right]
$$

and so both $\mathbf{u}=\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{c}-3 \\ 0 \\ 1\end{array}\right]$ must lie in π. Now we will project \mathbf{u} onto \mathbf{v} to get

$$
\mathbf{p}=\operatorname{proj}_{\mathbf{v}} \mathbf{u}=\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v}=\frac{-6}{10}\left[\begin{array}{c}
-3 \\
0 \\
1
\end{array}\right]=\frac{3}{5}\left[\begin{array}{c}
3 \\
0 \\
-1
\end{array}\right]
$$

Therefore a vector orthogonal to \mathbf{p}, and hence also to \mathbf{v}, is

$$
\mathbf{u}-\mathbf{p}=\left[\begin{array}{c}
\frac{1}{5} \\
1 \\
\frac{3}{5}
\end{array}\right]=\frac{1}{5}\left[\begin{array}{l}
1 \\
5 \\
3
\end{array}\right]
$$

To make life easier, a more convenient orthogonal vector is therefore

$$
\mathbf{w}=\left[\begin{array}{l}
1 \\
5 \\
3
\end{array}\right]
$$

[3] (b) We will use the orthogonal vectors \mathbf{v} and \mathbf{w} we found in part (a). Then

$$
\operatorname{proj}_{\pi} \mathbf{t}=\frac{\mathbf{t} \cdot \mathbf{v}}{\mathbf{u} \cdot \mathbf{v}} \mathbf{v}+\frac{\mathbf{t} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}} \mathbf{w}=\frac{-2}{10}\left[\begin{array}{c}
-3 \\
0 \\
1
\end{array}\right]+\frac{-1}{35}\left[\begin{array}{l}
1 \\
5 \\
3
\end{array}\right]=\left[\begin{array}{c}
\frac{4}{7} \\
-\frac{1}{7} \\
-\frac{2}{7}
\end{array}\right]=\frac{1}{7}\left[\begin{array}{c}
4 \\
-1 \\
-2
\end{array}\right]
$$

[6] 3. First we need to identify any point Q in π, such as $Q(0,7,0)$. Then the vector

$$
\mathbf{u}=\overrightarrow{P Q}=\left[\begin{array}{l}
2 \\
6 \\
4
\end{array}\right]
$$

Observe that the normal to the plane is the vector $\mathbf{n}=\left[\begin{array}{c}0 \\ 1 \\ -3\end{array}\right]$. Hence we project \mathbf{u} onto \mathbf{n} to get

$$
\mathbf{p}=\operatorname{proj}_{\mathbf{n}} \mathbf{u}=\frac{\mathbf{u} \cdot \mathbf{n}}{\mathbf{n} \cdot \mathbf{n}} \mathbf{n}=\frac{-6}{10}\left[\begin{array}{c}
0 \\
1 \\
-3
\end{array}\right]=\frac{3}{5}\left[\begin{array}{c}
0 \\
-1 \\
3
\end{array}\right]=\left[\begin{array}{c}
0 \\
-\frac{3}{5} \\
\frac{9}{5}
\end{array}\right] .
$$

Finally, we need to identify the point R for which $\mathbf{p}=\overrightarrow{P R}$. If R is the point (x, y, z) then

$$
\left[\begin{array}{c}
0 \\
-\frac{3}{5} \\
\frac{9}{5}
\end{array}\right]=\left[\begin{array}{l}
x+2 \\
y-1 \\
z+4
\end{array}\right]
$$

and so $x=-2, y=\frac{2}{5}$ and $z=-\frac{11}{5}$. In other words, the point in π closest to P is $\left(-2, \frac{2}{5},-\frac{11}{5}\right)$.
[6] 4. First we need to identify a point Q on ℓ, such as $Q(-1,3,-4)$. Next we construct the vector from Q to the origin $O, \mathbf{u}=\overrightarrow{Q O}=\left[\begin{array}{c}1 \\ -3 \\ 4\end{array}\right]$. Observe that the direction vector of ℓ is $\mathbf{d}=\left[\begin{array}{c}2 \\ -1 \\ 1\end{array}\right]$. Then the projection of \mathbf{u} onto ℓ is

$$
\mathbf{p}=\operatorname{proj}_{\mathbf{d}} \mathbf{u}=\frac{\mathbf{u} \cdot \mathbf{d}}{\mathbf{d} \cdot \mathbf{d}} \mathbf{d}=\frac{9}{6}\left[\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right]=\left[\begin{array}{c}
3 \\
-\frac{3}{2} \\
\frac{3}{2}
\end{array}\right]
$$

and so

$$
\mathbf{u}-\mathbf{p}=\left[\begin{array}{c}
-2 \\
-\frac{3}{2} \\
\frac{5}{2}
\end{array}\right]=\frac{1}{2}\left[\begin{array}{c}
-4 \\
-3 \\
5
\end{array}\right]
$$

Finally, the distance from the origin to ℓ is given by

$$
\|\mathbf{u}-\mathbf{p}\|=\frac{1}{2} \sqrt{(-4)^{2}+(-3)^{2}+5^{2}}=\frac{\sqrt{50}}{2}=\frac{5 \sqrt{2}}{2} .
$$

[4] 5. We set

$$
\begin{aligned}
\mathbf{u} \cdot(\mathbf{u}+k \mathbf{v}) & =0 \\
\mathbf{u} \cdot \mathbf{u}+k(\mathbf{u} \cdot \mathbf{v}) & =0 \\
78+4 k & =0 \\
k & =-\frac{39}{2} .
\end{aligned}
$$

[5] 6. (a) We set

$$
k_{1}\left[\begin{array}{c}
5 \\
-3 \\
9
\end{array}\right]+k_{2}\left[\begin{array}{l}
-6 \\
-2 \\
-1
\end{array}\right]+k_{3}\left[\begin{array}{c}
-3 \\
1 \\
-4
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .
$$

Thus we have the system of equations

$$
\begin{array}{r}
5 k_{1}-6 k_{2}-3 k_{3}=0 \\
-3 k_{1}-2 k_{2}+k_{3}=0 \\
9 k_{1}-k_{2}-4 k_{3}=0 .
\end{array}
$$

One way to solve this system is to add 3 times the second equation to the first equation, so

$$
-4 k_{1}-12 k_{2}=0 \quad \Longrightarrow \quad k_{1}=-3 k_{2} .
$$

Similarly, we could add 3 times the second equation to the third equation, so

$$
-7 k_{2}-k_{3}=0 \quad \Longrightarrow \quad k_{3}=-7 k_{2} .
$$

Substituting both of these back into the second equation, we have

$$
-3\left(-3 k_{2}\right)-2 k_{2}+\left(-7 k_{2}\right)=0 \quad \Longrightarrow \quad 0=0
$$

which must always be true. Hence any value of k_{2} satisfies the equation (such as $k_{2}=1$ for which $k_{1}=-3$ and $k_{3}=-7$). Thus these vectors are linearly dependent.
(b) We set

$$
k_{1}\left[\begin{array}{c}
5 \\
0 \\
-2 \\
8
\end{array}\right]+k_{2}\left[\begin{array}{l}
0 \\
3 \\
2 \\
0
\end{array}\right]+k_{3}\left[\begin{array}{c}
-1 \\
-4 \\
2 \\
0
\end{array}\right]+k_{4}\left[\begin{array}{c}
2 \\
-4 \\
1 \\
3
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right] .
$$

This results in the system of equations

$$
\begin{aligned}
5 k_{1}-k_{3}+2 k_{4} & =0 \\
3 k_{2}-4 k_{3}-4 k_{4} & =0 \\
-2 k_{1}+2 k_{2}+2 k_{3}+k_{4} & =0 \\
8 k_{1}+3 k_{4} & =0 .
\end{aligned}
$$

From the fourth equation, we can see that $k_{4}=-\frac{8}{3} k_{1}$. Substituting this into the first equation gives

$$
5 k_{1}-k_{3}+2\left(-\frac{8}{3} k_{1}\right)=0 \quad \Longrightarrow \quad-\frac{1}{3} k_{1}-k_{3}=0 \quad \Longrightarrow \quad k_{3}=-\frac{1}{3} k_{1} .
$$

Substituting both of these into the second equation gives

$$
3 k_{2}-4\left(-\frac{1}{3} k_{1}\right)-4\left(-\frac{8}{3} k_{1}\right)=0 \quad \Longrightarrow \quad 3 k_{2}+12 k_{1}=0 \quad \Longrightarrow \quad k_{2}=-4 k_{1} .
$$

Finally, substituting all of these into the third equation gives

$$
-2 k_{1}+2\left(-4 k_{1}\right)+2\left(-\frac{1}{3} k_{1}\right)+\left(-\frac{8}{3} k_{1}\right)=0 \quad \Longrightarrow \quad-\frac{40}{3} k_{1}=0 \quad \Longrightarrow \quad k_{1}=0
$$

and thus $k_{2}=k_{3}=k_{4}=0$ as well. Hence these vectors are linearly independent.

