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SOLUTIONS

1. (a) First we find the eigenvalues and eigenvectors of A. We have

det(A− λI) =

∣∣∣∣5− λ −2
1 2− λ

∣∣∣∣ = λ2 − 7λ+ 12 = (λ− 4)(λ− 3) = 0,

so λ1 = 4 and λ2 = 3. We have two distinct eigenvalues (and hence two linearly
independent eigenvectors) for this 2× 2 matrix, so A is diagonalizable.

For λ1, A− λI is the matrix [
1 −2
1 −2

]
−→

[
1 −2
0 0

]

so if x =

[
x
y

]
then y = t and x = 2t. Thus an eigenvector corresponding to λ1 is

x1 =

[
2
1

]
.

For λ2, A− λI is the matrix [
2 −2
1 −1

]
−→

[
2 −2
0 0

]

so y = t and x = t. Thus an eigenvector corresponding to λ2 is x2 =

[
1
1

]
.

Hence we can let

P =

[
2 1
1 1

]
and D =

[
4 0
0 3

]
.

(b) We have

det(A− λI) =

∣∣∣∣2− λ 1
−1 −λ

∣∣∣∣ = λ2 − 2λ+ 1 = (λ− 1)2 = 0

so λ = 1 is the only eigenvalue. The matrix A− λI is[
1 1
−1 −1

]
−→

[
1 1
0 0

]
so y = t and x = t. Hence the only corresponding eigenvector is x = −11 (and its
multiples). So we do not have the requisite two linearly independent eigenvectors, and
therefore A is not diagonalizable.



(c) We have

det(A− λI) =

∣∣∣∣∣∣
2− λ −16 −2

0 5− λ 0
2 −8 −3− λ

∣∣∣∣∣∣
= (5− λ)[(2− λ)(−3− λ) + 4] = −λ3 + 4λ2 + 7λ− 10

= (λ− 1)((λ+ 2)(λ− 5) = 0,

so λ1 = 1, λ2 = −2, λ3 = 5. We have three distinct eigenvalues for this 3× 3 matrix, so
A must be diagonalizable.

For λ1, A− λI is1 −16 −2
0 4 0
2 −8 −4

 −→
1 −16 −2

0 4 0
0 24 0

 −→
1 −16 −2

0 1 0
0 24 0

 −→
1 −16 −2

0 1 0
0 0 0



so if x =

xy
z

 then z = t, y = 0 and x = 2t. Hence x1 =

2
0
1

.

For λ2, A− λI is4 −16 −2
0 7 0
2 −8 −1

 −→
1 −4 −1

2

0 7 0
2 −8 −1

 −→
1 −4 −1

2

0 7 0
0 0 0

 −→
1 −4 −1

2

0 1 0
0 0 0



so z = t, y = 0 and x = 1
2
t. Hence x2 =

1
0
2

.

For λ3, A− λI is−3 −16 −2
0 0 0
2 −8 −8

 −→
 2 −8 −8

0 0 0
−3 −16 −2

 −→
 1 −4 −4

0 0 0
−3 −16 −2

 −→
1 −4 −4

0 0 0
0 −28 −14


−→

1 −4 −4
0 −28 −14
0 0 0

 −→
1 −4 −4

0 1 1
2

0 0 0



so z = t, y = −1
2
t and x = 2t. Hence x3 =

 4
−1
2

.

Hence we can let

P =

2 1 4
0 0 −1
1 2 2

 and D =

1 0 0
0 −2 0
0 0 5

 .



(d) We have

det(A− λI) =

∣∣∣∣∣∣
8− λ 9 −9

0 2− λ 0
4 6 −4− λ

∣∣∣∣∣∣
= (2− λ)[(8− λ)(−4− λ) + 36] = −λ3 + 6λ2 − 12λ+ 8

= −(λ− 2)3 = 0

so λ = 2 is the only eigenvalue. The matrix A− λI is6 9 −9
0 0 0
4 6 −6

 −→
1 3

2
−3

2

0 0 0
4 6 −6

 −→
1 3

2
−3

2

0 0 0
0 0 0


so z = t, y = s and x = 3

2
t− 3

2
s. Thus we have two linearly independent eigenvectors:

x1 =

3
0
2

 and x2 =

−3
0
2

 .
But we require three such eigenvectors, so A is not diagonalizable.


