# MEMORIAL UNIVERSITY OF NEWFOUNDLAND <br> DEPARTMENT OF MATHEMATICS AND STATISTICS 

## SOLUTIONS

1. (a) First we find the eigenvalues and eigenvectors of $A$. We have

$$
\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
5-\lambda & -2 \\
1 & 2-\lambda
\end{array}\right|=\lambda^{2}-7 \lambda+12=(\lambda-4)(\lambda-3)=0
$$

so $\lambda_{1}=4$ and $\lambda_{2}=3$. We have two distinct eigenvalues (and hence two linearly independent eigenvectors) for this $2 \times 2$ matrix, so $A$ is diagonalizable.
For $\lambda_{1}, A-\lambda I$ is the matrix

$$
\left[\begin{array}{ll}
1 & -2 \\
1 & -2
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & -2 \\
0 & 0
\end{array}\right]
$$

so if $\mathbf{x}=\left[\begin{array}{l}x \\ y\end{array}\right]$ then $y=t$ and $x=2 t$. Thus an eigenvector corresponding to $\lambda_{1}$ is $\mathbf{x}_{1}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$.
For $\lambda_{2}, A-\lambda I$ is the matrix

$$
\left[\begin{array}{cc}
2 & -2 \\
1 & -1
\end{array}\right] \rightarrow\left[\begin{array}{cc}
2 & -2 \\
0 & 0
\end{array}\right]
$$

so $y=t$ and $x=t$. Thus an eigenvector corresponding to $\lambda_{2}$ is $\mathbf{x}_{2}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
Hence we can let

$$
P=\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right] \quad \text { and } \quad D=\left[\begin{array}{ll}
4 & 0 \\
0 & 3
\end{array}\right] .
$$

(b) We have

$$
\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
2-\lambda & 1 \\
-1 & -\lambda
\end{array}\right|=\lambda^{2}-2 \lambda+1=(\lambda-1)^{2}=0
$$

so $\lambda=1$ is the only eigenvalue. The matrix $A-\lambda I$ is

$$
\left[\begin{array}{cc}
1 & 1 \\
-1 & -1
\end{array}\right] \longrightarrow\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]
$$

so $y=t$ and $x=t$. Hence the only corresponding eigenvector is $\mathbf{x}=-11$ (and its multiples). So we do not have the requisite two linearly independent eigenvectors, and therefore $A$ is not diagonalizable.
(c) We have

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\left|\begin{array}{ccc}
2-\lambda & -16 & -2 \\
0 & 5-\lambda & 0 \\
2 & -8 & -3-\lambda
\end{array}\right| \\
& =(5-\lambda)[(2-\lambda)(-3-\lambda)+4]=-\lambda^{3}+4 \lambda^{2}+7 \lambda-10 \\
& =(\lambda-1)((\lambda+2)(\lambda-5)=0,
\end{aligned}
$$

so $\lambda_{1}=1, \lambda_{2}=-2, \lambda_{3}=5$. We have three distinct eigenvalues for this $3 \times 3$ matrix, so $A$ must be diagonalizable.
For $\lambda_{1}, A-\lambda I$ is

$$
\left[\begin{array}{ccc}
1 & -16 & -2 \\
0 & 4 & 0 \\
2 & -8 & -4
\end{array}\right] \longrightarrow\left[\begin{array}{ccc}
1 & -16 & -2 \\
0 & 4 & 0 \\
0 & 24 & 0
\end{array}\right] \longrightarrow\left[\begin{array}{ccc}
1 & -16 & -2 \\
0 & 1 & 0 \\
0 & 24 & 0
\end{array}\right] \longrightarrow\left[\begin{array}{ccc}
1 & -16 & -2 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

so if $\mathbf{x}=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ then $z=t, y=0$ and $x=2 t$. Hence $\mathbf{x}_{1}=\left[\begin{array}{l}2 \\ 0 \\ 1\end{array}\right]$.
For $\lambda_{2}, A-\lambda I$ is

$$
\left[\begin{array}{ccc}
4 & -16 & -2 \\
0 & 7 & 0 \\
2 & -8 & -1
\end{array}\right] \longrightarrow\left[\begin{array}{ccc}
1 & -4 & -\frac{1}{2} \\
0 & 7 & 0 \\
2 & -8 & -1
\end{array}\right] \longrightarrow\left[\begin{array}{ccc}
1 & -4 & -\frac{1}{2} \\
0 & 7 & 0 \\
0 & 0 & 0
\end{array}\right] \longrightarrow\left[\begin{array}{ccc}
1 & -4 & -\frac{1}{2} \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

so $z=t, y=0$ and $x=\frac{1}{2} t$. Hence $\mathbf{x}_{2}=\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right]$.
For $\lambda_{3}, A-\lambda I$ is

$$
\begin{aligned}
{\left[\begin{array}{ccc}
-3 & -16 & -2 \\
0 & 0 & 0 \\
2 & -8 & -8
\end{array}\right] } & \longrightarrow\left[\begin{array}{ccc}
2 & -8 & -8 \\
0 & 0 & 0 \\
-3 & -16 & -2
\end{array}\right]
\end{aligned} \longrightarrow\left[\begin{array}{ccc}
1 & -4 & -4 \\
0 & 0 & 0 \\
-3 & -16 & -2
\end{array}\right] \longrightarrow\left[\begin{array}{ccc}
1 & -4 & -4 \\
0 & 0 & 0 \\
0 & -28 & -14
\end{array}\right] .
$$

Hence we can let

$$
P=\left[\begin{array}{ccc}
2 & 1 & 4 \\
0 & 0 & -1 \\
1 & 2 & 2
\end{array}\right] \quad \text { and } \quad D=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & 5
\end{array}\right]
$$

(d) We have

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\left|\begin{array}{ccc}
8-\lambda & 9 & -9 \\
0 & 2-\lambda & 0 \\
4 & 6 & -4-\lambda
\end{array}\right| \\
& =(2-\lambda)[(8-\lambda)(-4-\lambda)+36]=-\lambda^{3}+6 \lambda^{2}-12 \lambda+8 \\
& =-(\lambda-2)^{3}=0
\end{aligned}
$$

so $\lambda=2$ is the only eigenvalue. The matrix $A-\lambda I$ is

$$
\left[\begin{array}{ccc}
6 & 9 & -9 \\
0 & 0 & 0 \\
4 & 6 & -6
\end{array}\right] \longrightarrow\left[\begin{array}{ccc}
1 & \frac{3}{2} & -\frac{3}{2} \\
0 & 0 & 0 \\
4 & 6 & -6
\end{array}\right] \longrightarrow\left[\begin{array}{ccc}
1 & \frac{3}{2} & -\frac{3}{2} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

so $z=t, y=s$ and $x=\frac{3}{2} t-\frac{3}{2} s$. Thus we have two linearly independent eigenvectors:

$$
\mathbf{x}_{1}=\left[\begin{array}{l}
3 \\
0 \\
2
\end{array}\right] \quad \text { and } \quad \mathbf{x}_{2}=\left[\begin{array}{c}
-3 \\
0 \\
2
\end{array}\right]
$$

But we require three such eigenvectors, so $A$ is not diagonalizable.

