MEMORIAL UNIVERSITY OF NEWFOUNDLAND

DEPARTMENT OF MATHEMATICS AND STATISTICS

SOLUTIONS

1. (a) Observe that

$$
\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
2-\lambda & -1 \\
5 & -4-\lambda
\end{array}\right|=\lambda^{2}+2 \lambda-3=(\lambda+3)(\lambda-1)=0
$$

so $\lambda=-3$ and $\lambda=1$. For $\lambda=-3, A-\lambda I$ is

$$
\left[\begin{array}{cc}
5 & -1 \\
5 & -1
\end{array}\right] \rightarrow\left[\begin{array}{cc}
5 & -1 \\
0 & 0
\end{array}\right]
$$

so if $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ then $x_{2}=t$ is a free variable and $x_{1}=\frac{1}{5} x_{2}=\frac{1}{5} t$. Thus the eigenspace corresponding to $\lambda=-3$ is the set of all vectors of the form

$$
\mathbf{x}=\left[\begin{array}{c}
\frac{1}{5} t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
5
\end{array}\right] .
$$

For $\lambda=1, A-\lambda I$ is

$$
\left[\begin{array}{ll}
1 & -1 \\
5 & -5
\end{array}\right] \longrightarrow\left[\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right]
$$

so $x_{2}=t$ is a free variable and $x_{1}=x_{2}=t$. Hence the eigenspace corresponding to $\lambda=1$ is the set of all vectors of the form

$$
\mathbf{x}=\left[\begin{array}{l}
t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

(b) Observe that

$$
\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
3-\lambda & 2 \\
6 & 4-\lambda
\end{array}\right|=\lambda^{2}-7 \lambda=\lambda(\lambda-7)=0
$$

so $\lambda=0$ and $\lambda=7$. For $\lambda=0, A-\lambda I$ is

$$
\left[\begin{array}{ll}
3 & 2 \\
6 & 4
\end{array}\right] \rightarrow\left[\begin{array}{ll}
1 & \frac{2}{3} \\
6 & 4
\end{array}\right] \longrightarrow\left[\begin{array}{ll}
1 & \frac{2}{3} \\
0 & 0
\end{array}\right]
$$

so if $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ then $x_{2}=t$ is a free variable and $x_{1}=-\frac{2}{3} x_{2}=-\frac{2}{3} t$. Thus the eigenspace corresponding to $\lambda=0$ is the set of all vectors of the form

$$
\mathbf{x}=\left[\begin{array}{c}
-\frac{2}{3} t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-2 \\
3
\end{array}\right]
$$

For $\lambda=7, A-\lambda I$ is

$$
\left[\begin{array}{cc}
-4 & 2 \\
6 & -3
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & -\frac{1}{2} \\
6 & -3
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & -\frac{1}{2} \\
0 & 0
\end{array}\right]
$$

so $x_{2}=t$ is a free variable and $x_{1}=\frac{1}{2} x_{2}=\frac{1}{2} t$. Hence the eigenspace corresponding to $\lambda=7$ is the set of all vectors of the form

$$
\mathbf{x}=\left[\begin{array}{c}
\frac{1}{2} t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
2
\end{array}\right] .
$$

(c) Observe that

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\left|\begin{array}{ccc}
7-\lambda & 0 & -4 \\
0 & 5-\lambda & 0 \\
5 & 0 & -2-\lambda
\end{array}\right|=-\lambda^{3}+10 \lambda^{2}-31 \lambda+30 \\
& =-(\lambda-2)(\lambda-3)(\lambda-5)=0,
\end{aligned}
$$

where the polynomial can be factored by either long division or synthetic division. So $\lambda=2, \lambda=3$ and $\lambda=5$. For $\lambda=2, A-\lambda I$ is

$$
\left[\begin{array}{ccc}
5 & 0 & -4 \\
0 & 3 & 0 \\
5 & 0 & -4
\end{array}\right] \longrightarrow\left[\begin{array}{ccc}
1 & 0 & -\frac{4}{5} \\
0 & 3 & 0 \\
5 & 0 & -4
\end{array}\right] \longrightarrow\left[\begin{array}{ccc}
1 & 0 & -\frac{4}{5} \\
0 & 3 & 0 \\
0 & 0 & 0
\end{array}\right] \longrightarrow\left[\begin{array}{ccc}
1 & 0 & -\frac{4}{5} \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

so if $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$ then $x_{3}=t$ is a free variable, $x_{2}=0$, and $x_{1}=\frac{4}{5} x_{3}=\frac{4}{5} t$. Thus the eigenspace corresponding to $\lambda=2$ is the set of all vectors of the form

$$
\mathbf{x}=\left[\begin{array}{c}
\frac{4}{5} t \\
0 \\
t
\end{array}\right]=t\left[\begin{array}{l}
4 \\
0 \\
5
\end{array}\right]
$$

For $\lambda=3, A-\lambda I$ is

$$
\left[\begin{array}{ccc}
4 & 0 & -4 \\
0 & 2 & 0 \\
5 & 0 & -5
\end{array}\right] \longrightarrow\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 2 & 0 \\
5 & 0 & -5
\end{array}\right] \longrightarrow\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 2 & 0 \\
0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

so $x_{3}=t$ is a free variable, $x_{2}=0$, and $x_{1}=x_{3}=t$. Hence the eigenspace corresponding to $\lambda=3$ is the set of all vectors of the form

$$
\mathbf{x}=\left[\begin{array}{l}
t \\
0 \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] .
$$

Finally, for $\lambda=5, A-\lambda I$ is

$$
\left[\begin{array}{ccc}
2 & 0 & -4 \\
0 & 0 & 0 \\
5 & 0 & -7
\end{array}\right] \longrightarrow\left[\begin{array}{ccc}
1 & 0 & -2 \\
0 & 0 & 0 \\
5 & 0 & -7
\end{array}\right] \longrightarrow\left[\begin{array}{ccc}
1 & 0 & -2 \\
0 & 0 & 0 \\
0 & 0 & 3
\end{array}\right] \longrightarrow\left[\begin{array}{ccc}
1 & 0 & -2 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

so $x_{2}=t$ is a free variable, $x_{3}=0$, and $x_{1}=2 x_{3}=0$. Hence the eigenspace corresponding to $\lambda=5$ is the set of all vectors of the form

$$
\mathbf{x}=\left[\begin{array}{l}
0 \\
t \\
0
\end{array}\right]=t\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] .
$$

(d) Observe that

$$
\operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}
2-\lambda & 1 & 1 \\
0 & 1-\lambda & 0 \\
1 & -1 & 2-\lambda
\end{array}\right|=-\lambda^{3}+5 \lambda^{2}-7 \lambda+3=-(\lambda-1)^{2}(\lambda-3)=0,
$$

so $\lambda=1$ and $\lambda=3$. For $\lambda=1, A-\lambda I$ is

$$
\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 0 & 0 \\
1 & -1 & 1
\end{array}\right] \longrightarrow\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & -2 & 0 \\
0 & 0 & 0
\end{array}\right] \longrightarrow\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

so if $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$ then $x_{3}=t$ is a free variable, $x_{2}=0$, and $x_{1}=-x_{3}-x_{2}=-t$. Thus the eigenspace corresponding to $\lambda=1$ is the set of all vectors of the form

$$
\mathbf{x}=\left[\begin{array}{c}
-t \\
0 \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
$$

For $\lambda=3, A-\lambda I$ is

$$
\left[\begin{array}{ccc}
-1 & 1 & 1 \\
0 & -2 & 0 \\
1 & -1 & -1
\end{array}\right] \longrightarrow\left[\begin{array}{ccc}
1 & -1 & -1 \\
0 & -2 & 0 \\
1 & -1 & -1
\end{array}\right] \longrightarrow\left[\begin{array}{ccc}
1 & -1 & -1 \\
0 & -2 & 0 \\
0 & 0 & 0
\end{array}\right] \longrightarrow\left[\begin{array}{ccc}
1 & -1 & -1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

so $x_{3}=t$ is a free variable, $x_{2}=0$, and $x_{1}=x_{3}+x_{2}=t$. Hence the eigenspace corresponding to $\lambda=3$ is the set of all vectors of the form

$$
\mathbf{x}=\left[\begin{array}{l}
t \\
0 \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] .
$$

(e) Observe that

$$
\operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}
2-\lambda & 1 & 1 \\
0 & 3-\lambda & 0 \\
1 & -1 & 2-\lambda
\end{array}\right|=-\lambda^{3}+7 \lambda^{2}-15 \lambda+9=-(\lambda-1)(\lambda-3)^{2}=0
$$

so $\lambda=1$ and $\lambda=3$. For $\lambda=1, A-\lambda I$ is

$$
\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 2 & 0 \\
1 & -1 & 1
\end{array}\right] \longrightarrow\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 2 & 0 \\
0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

so if $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$ then $x_{3}=t$ is a free variable, $x_{2}=0$, and $x_{1}=-x_{3}-x_{2}=-t$. Thus the eigenspace corresponding to $\lambda=1$ is the set of all vectors of the form

$$
\mathbf{x}=\left[\begin{array}{c}
-t \\
0 \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
$$

For $\lambda=3, A-\lambda I$ is

$$
\left[\begin{array}{ccc}
-1 & 1 & 1 \\
0 & 0 & 0 \\
1 & -1 & -1
\end{array}\right] \longrightarrow\left[\begin{array}{ccc}
1 & -1 & -1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

so $x_{3}=t$ and $x_{2}=s$ are free variables, and $x_{1}=x_{3}+x_{2}=t+s$. Hence the eigenspace corresponding to $\lambda=3$ is the set of all vectors of the form

$$
\mathbf{x}=\left[\begin{array}{c}
t+s \\
s \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]+s\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] .
$$

2. Since \mathbf{x} is an eigenvector of A with corresponding eigenvalue λ, we know that $A \mathbf{x}=\lambda \mathbf{x}$. But since A is invertible, we can multiply by A^{-1} on both sides:

$$
\begin{aligned}
A^{-1} A \mathbf{x} & =A^{-1} \lambda \mathbf{x} \\
\mathbf{x} & =\lambda A^{-1} \mathbf{x} \\
\frac{1}{\lambda} \mathbf{x} & =A^{-1} \mathbf{x} \\
\mu \mathbf{x} & =A^{-1} \mathbf{x}
\end{aligned}
$$

where the scalar $\mu=\frac{1}{\lambda}$ exists and is non-zero because $\lambda \neq 0$. Thus \mathbf{x} is an eigenvector of A^{-1} with corresponding eigenvalue $\mu=\frac{1}{\lambda}$.

