MEMORIAL UNIVERSITY OF NEWFOUNDLAND
 DEPARTMENT OF MATHEMATICS AND STATISTICS

Test 2
MATH 2050
Winter 2018

SOLUTIONS

[6] 1. (a) We can write this system in the form $A \mathbf{x}=\mathbf{0}$ where

$$
\begin{aligned}
A=\left[\begin{array}{ccc}
3 & -1 & -2 \\
-1 & 2 & -6 \\
1 & -1 & 2
\end{array}\right] & \xrightarrow{R_{1} \leftrightarrow R_{3}}\left[\begin{array}{ccc}
1 & -1 & 2 \\
-1 & 2 & -6 \\
3 & -1 & -2
\end{array}\right] \xrightarrow{\substack{R_{2} \rightarrow R_{2}-(-1) R_{1} \\
R_{3} \rightarrow R_{3}-3 R_{1}}}\left[\begin{array}{ccc}
1 & -1 & 2 \\
0 & 1 & -4 \\
0 & 2 & -8
\end{array}\right] \\
& \xrightarrow{R_{3} \rightarrow R_{3}-2 R_{2}}\left[\begin{array}{ccc}
1 & -1 & 2 \\
0 & 1 & -4 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

so then $z=t$ is a free variable, $y=4 z=4 t$ and $x=y-2 z=2 t$. Hence

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
2 t \\
4 t \\
t
\end{array}\right]=t\left[\begin{array}{l}
2 \\
4 \\
1
\end{array}\right] .
$$

[2]
(b) Since $\mathbf{x}_{h}=t\left[\begin{array}{l}2 \\ 4 \\ 1\end{array}\right]$, we have

$$
\mathbf{x}=\mathbf{x}_{p}+\mathbf{x}_{h}=\left[\begin{array}{c}
2 \\
1 \\
-1
\end{array}\right]+t\left[\begin{array}{l}
2 \\
4 \\
1
\end{array}\right] .
$$

[2] (c) The columns of the matrix A are exactly the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}$ and \mathbf{v}_{3}, and the solution to the equation $A \mathbf{x}=\mathbf{0}$ has an infinite number of solutions, which means that there are non-trivial linear combinations such that

$$
x \mathbf{v}_{1}+y \mathbf{v}_{2}+z \mathbf{v}_{3}=\mathbf{0}
$$

Hence these vectors are linearly dependent.
[6] 2. We row-reduce the augmented matrix:

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
1 & 1 & 0 \\
2 & 3 & k \\
-4 & k & 5
\end{array}\right] \xrightarrow{\substack{R_{2} \rightarrow R_{2}-2 R_{1} \\
R_{3} \rightarrow R_{3}-(-4) R_{1}}}\left[\begin{array}{cc|c}
1 & 1 & 0 \\
0 & 1 & k \\
0 & k+4 & 5
\end{array}\right]} \\
\\
R_{3} \rightarrow R_{3}-(k+4) R_{2}
\end{gathered}\left[\begin{array}{ll|c}
1 & 1 & 0 \\
0 & 1 & k \\
0 & 0 & 5-k(k+4)
\end{array}\right] .
$$

This system will only have solutions if

$$
\begin{array}{r}
5-k(k+4)=0 \\
k^{2}+4 k-5=0 \\
(k+5)(k-1)=0
\end{array}
$$

that is, if $k=-5$ or $k=1$. Thus the system has no solutions if $k \neq-5$ and $k \neq 1$.
[12] 3. - $A+B$ cannot be evaluated because A and B are not of the same size

- $A+A^{T}=\left[\begin{array}{cc}4 & -1 \\ 0 & 2\end{array}\right]+\left[\begin{array}{cc}4 & 0 \\ -1 & 2\end{array}\right]=\left[\begin{array}{cc}8 & -1 \\ -1 & 4\end{array}\right]$
- $A B=\left[\begin{array}{ccc}-1 & -12 & -11 \\ 10 & 0 & 6\end{array}\right]$
- $B A$ cannot be evaluated because B has 3 columns, but A has only 2 rows
- $A^{2}=\left[\begin{array}{cc}16 & -6 \\ 0 & 4\end{array}\right]$
- B^{2} cannot be evaluated because B is not a square matrix
[6] 4. (a) We have

$$
\begin{aligned}
& {\left[\begin{array}{ccc|ccc}
0 & -5 & 0 & 1 & 0 & 0 \\
1 & 0 & -3 & 0 & 1 & 0 \\
2 & 0 & -5 & 0 & 0 & 1
\end{array}\right] \xrightarrow{R_{1} \leftrightarrow R_{2}}\left[\begin{array}{ccc|ccc}
1 & 0 & -3 & 0 & 1 & 0 \\
0 & -5 & 0 & 1 & 0 & 0 \\
2 & 0 & -5 & 0 & 0 & 1
\end{array}\right] } \\
& \xrightarrow{R_{3} \rightarrow R_{3}-2 R_{1}}\left[\begin{array}{ccc|ccc}
1 & 0 & -3 & 0 & 1 & 0 \\
0 & -5 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & -2 & 1
\end{array}\right] \\
& \xrightarrow{R_{2} \rightarrow-\frac{1}{5} R_{2}}\left[\begin{array}{ccc|ccc}
1 & 0 & -3 & 0 & 1 & 0 \\
0 & 1 & 0 & -\frac{1}{5} & 0 & 0 \\
0 & 0 & 1 & 0 & -2 & 1
\end{array}\right] \\
& \xrightarrow{R_{1} \rightarrow R_{1}-(-3) R_{3}}\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & 0 & -5 & 3 \\
0 & 1 & 0 & -\frac{1}{5} & 0 & 0 \\
0 & 0 & 1 & 0 & -2 & 1
\end{array}\right]
\end{aligned}
$$

and so

$$
A^{-1}=\left[\begin{array}{ccc}
0 & -5 & 3 \\
-\frac{1}{5} & 0 & 0 \\
0 & -2 & 1
\end{array}\right]
$$

(b) The elementary matrices corresponding to the row operations in part (a) are

$$
E_{1}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right], \quad E_{2}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right], \quad E_{3}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -\frac{1}{5} & 0 \\
0 & 0 & 1
\end{array}\right], \quad E_{4}=\left[\begin{array}{lll}
1 & 0 & 3 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] .
$$

The inverses of these matrices are

$$
E_{1}^{-1}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right], \quad E_{2}^{-1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
2 & 0 & 1
\end{array}\right], \quad E_{3}^{-1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -5 & 0 \\
0 & 0 & 1
\end{array}\right], \quad E_{4}^{-1}=\left[\begin{array}{ccc}
1 & 0 & -3 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] .
$$

Thus

$$
\begin{aligned}
A & =E_{1}^{-1} E_{2}^{-1} E_{3}^{-1} E_{4}^{-1} \\
& =\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
2 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -5 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & -3 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] .
\end{aligned}
$$

