MEMORIAL UNIVERSITY OF NEWFOUNDLAND
 DEPARTMENT OF MATHEMATICS AND STATISTICS

Assignment 2
MATH 2050
Winter 2018

SOLUTIONS

[4] 1. If the plane is perpendicular to the line ℓ then the direction vector for ℓ,

$$
\mathbf{d}=\left[\begin{array}{c}
3 \\
4 \\
-1
\end{array}\right]
$$

is a normal to the plane. Thus the equation of the plane has the form

$$
3 x+4 y-z=d .
$$

Since $P(1,-2,-9)$ is a point in the plane,

$$
d=3(1)+4(-2)-(-9)=4
$$

so the equation of the plane is

$$
3 x+4 y-z=4
$$

[6] 2. We need two vectors in the plane, such as

$$
\overrightarrow{B A}=\left[\begin{array}{l}
5 \\
2 \\
1
\end{array}\right] \quad \text { and } \quad \overrightarrow{C A}=\left[\begin{array}{l}
0 \\
4 \\
4
\end{array}\right]
$$

A normal to the plane is

$$
\mathbf{n}=\overrightarrow{B A} \times \overrightarrow{C A}=\left|\begin{array}{ll}
2 & 1 \\
4 & 4
\end{array}\right| \mathbf{i}-\left|\begin{array}{ll}
5 & 1 \\
0 & 4
\end{array}\right| \mathbf{j}+\left|\begin{array}{ll}
5 & 2 \\
0 & 4
\end{array}\right| \mathbf{k}=4 \mathbf{i}-20 \mathbf{j}+20 \mathbf{k}=\left[\begin{array}{c}
4 \\
-20 \\
20
\end{array}\right] .
$$

Thus the equation of the plane has the form

$$
4 x-20 y+20 z=d
$$

Since $A(3,0,1)$ is a point in the plane,

$$
d=4(3)-20(0)+20(1)=32
$$

so the equation of the plane is

$$
4 x-20 y+20 z=32
$$

[4] 3. A direction vector for the line is

$$
\mathbf{d}=\overrightarrow{A B}=\left[\begin{array}{l}
5 \\
4 \\
3
\end{array}\right]
$$

so an appropriate vector equation is

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
-7 \\
1 \\
2
\end{array}\right]+t\left[\begin{array}{l}
5 \\
4 \\
3
\end{array}\right] .
$$

The corresponding parametric equations are

$$
\begin{aligned}
& x=-7+5 t \\
& y=1+4 t \\
& z=2+3 t .
\end{aligned}
$$

[6] 4. (a) We will use s the represent the parameter of the second line. Then, comparing the corresponding parametric equations, we must have

$$
\begin{aligned}
8-6 t & =-s \\
-5+t & =11+3 s \\
2+4 t & =-6-2 s
\end{aligned}
$$

Multiplying the second equation by 6 and adding it to the first equation gives

$$
-22=66+17 s \quad \Longrightarrow \quad 17 s=-88 \quad \Longrightarrow \quad s=-\frac{88}{17} .
$$

Substituting this back into the first equation, we have

$$
8-6 t=-\left(-\frac{88}{17}\right) \Longrightarrow 6 t=\frac{48}{17} \quad \Longrightarrow \quad t=\frac{8}{17}
$$

But we must ensure that this is consistent with the third equation, where we find that

$$
2+4 t=2+4\left(\frac{8}{17}\right)=\frac{66}{17}
$$

while

$$
-6-2 s=-6-2\left(-\frac{88}{17}\right)=\frac{74}{17} .
$$

Since these are not equal, there are no values of t and s which satisfy all three equations, and hence the two lines do not intersect.
[6] (b) We have

$$
\begin{aligned}
8-6 t & =-s \\
-5+2 t & =11+3 s \\
2+4 t & =-6-2 s
\end{aligned}
$$

Multiplying the second equation by 3 and adding it to the first equation gives

$$
-7=33+8 s \quad \Longrightarrow \quad 8 s=-40 \quad \Longrightarrow \quad s=-5
$$

Substituting this back into the first equation gives

$$
8-6 t=-(-5) \quad \Longrightarrow \quad 6 t=3 \quad \Longrightarrow \quad t=\frac{1}{2}
$$

Again, we must ensure that this solution is consistent with the third equation, where we find that

$$
2+4 t=2+4\left(\frac{1}{2}\right)=4
$$

while

$$
-6-2 s=-6-2(-5)=4
$$

as well. Thus we have found a solution to the equation, which upon substitution into either vector equation yields the point of intersection $(5,-4,4)$.
(c) This time we can simply compare the direction vectors of the two lines and observe that

$$
\left[\begin{array}{c}
-6 \tag{2}\\
2 \\
4
\end{array}\right]=-2\left[\begin{array}{c}
3 \\
-1 \\
-2
\end{array}\right]
$$

Since these two vectors are parallel, we can conclude that the lines are also parallel and so they do not intersect.
[2] 5. (a) Setting $x=-5, y=0$ and $z=2$ in the equations of both planes, we see that

$$
x-y+3 z=-5-0+3(2)=1
$$

and

$$
x-2 y+3 z=-5-2(0)+3(2)=1
$$

as well. Thus both equations are satisfied, and hence the point $(-5,0,2)$ must lie in both planes.
[6] (b) We have already identified a point on this line, so we just need its direction vector. Since this vector must lie in both planes, it must be perpendicular to both of their respective normals. Such a vector is given by the cross product of the two normals:

$$
\left[\begin{array}{c}
1 \\
-1 \\
3
\end{array}\right] \times\left[\begin{array}{c}
1 \\
-2 \\
3
\end{array}\right]=\left|\begin{array}{ll}
-1 & 3 \\
-2 & 3
\end{array}\right| \mathbf{i}-\left|\begin{array}{cc}
1 & 3 \\
1 & 3
\end{array}\right| \mathbf{j}+\left|\begin{array}{cc}
1 & -1 \\
1 & -2
\end{array}\right| \mathbf{k}=3 \mathbf{i}-0 \mathbf{j}-\mathbf{k}=\left[\begin{array}{c}
3 \\
0 \\
-1
\end{array}\right]
$$

Hence the vector equation of the line of intersection is

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
-5 \\
0 \\
2
\end{array}\right]+t\left[\begin{array}{c}
3 \\
0 \\
-1
\end{array}\right] .
$$

[4] 6. From the equation of the line, we can see that $x=3+t, y=1+4 t$ and $z=6-3 t$ for any point which lies on it. If such a point also lies in the plane then we must have

$$
\begin{aligned}
5(3+t)-2(1+4 t)-(6-3 t) & =3 \\
15+5 t-2-8 t-6+3 t & =3 \\
7 & =3
\end{aligned}
$$

which is not possible. Thus the line and the plane do not intersect.

