SOLUTIONS

1. (a) We have

$$
\begin{aligned}
& {\left[\begin{array}{ccc|ccc}
4 & -8 & 0 & 1 & 0 & 0 \\
12 & -23 & 0 & 0 & 1 & 0 \\
0 & 20 & 4 & 0 & 0 & 1
\end{array}\right] } \xrightarrow{R_{1} \rightarrow \frac{1}{4} R_{1}}\left[\begin{array}{ccc|ccc}
1 & -2 & 0 & \frac{1}{4} & 0 & 0 \\
12 & -23 & 0 & 0 & 1 & 0 \\
0 & 20 & 4 & 0 & 0 & 1
\end{array}\right] \\
& \xrightarrow{R_{2} \rightarrow R_{2}-12 R_{1}}\left[\begin{array}{ccc|ccc}
1 & -2 & 0 & \frac{1}{4} & 0 & 0 \\
0 & 1 & 0 & -3 & 1 & 0 \\
0 & 20 & 4 & 0 & 0 & 1
\end{array}\right] \xrightarrow{\substack{R_{1} \rightarrow R_{1}-(-2) R_{2} \\
R_{3} \rightarrow R_{3}-20 R_{2}}} \xrightarrow{ }\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & -\frac{23}{4} & 2 & 0 \\
0 & 1 & 0 & -3 & 1 & 0 \\
0 & 0 & 4 & 60 & -20 & 1
\end{array}\right] \\
& \xrightarrow{R_{3} \rightarrow \frac{1}{4} R_{3}}\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & -\frac{23}{4} & 2 & 0 \\
0 & 1 & 0 & -3 & 1 & 0 \\
0 & 0 & 1 & 15 & -5 & \frac{1}{4}
\end{array}\right]
\end{aligned}
$$

so

$$
A^{-1}=\left[\begin{array}{ccc}
-\frac{23}{4} & 2 & 0 \\
-3 & 1 & 0 \\
15 & -5 & \frac{1}{4}
\end{array}\right] .
$$

(b) We have

$$
\begin{array}{rc}
{\left[\begin{array}{ccc|ccc}
1 & 0 & 2 & 1 & 0 & 0 \\
3 & 1 & 0 & 0 & 1 & 0 \\
1 & -1 & 8 & 0 & 0 & 1
\end{array}\right] \xrightarrow{\substack{R_{2} \rightarrow R_{2}-3 R_{1} \\
R_{3} \rightarrow R_{3}-R_{1}}}\left[\begin{array}{ccc|ccc}
1 & 0 & 2 & 1 & 0 & 0 \\
0 & 1 & -6 & -3 & 1 & 0 \\
0 & -1 & 6 & -1 & 0 & 1
\end{array}\right]} \\
& \xrightarrow{R_{3} \rightarrow R_{3}-(-1) R_{2}}\left[\begin{array}{ccc|ccc}
1 & 0 & 2 & 1 & 0 & 0 \\
0 & 1 & -6 & -3 & 1 & 0 \\
0 & 0 & 0 & -4 & 1 & 1
\end{array}\right] .
\end{array}
$$

Now we have a row of zeros, so there is no way to row-reduce the matrix on the left to I. Hence A is not invertible.
(c) We have

$$
\begin{aligned}
& \left.\qquad \begin{array}{ccccc|cccc}
1 & 0 & 3 & -2 & 1 & 0 & 0 & 0 \\
-4 & 1 & -8 & 8 & 0 & 1 & 0 & 0 \\
6 & 0 & 19 & -12 & 0 & 0 & 1 & 0 \\
0 & -2 & -8 & 1 & 0 & 0 & 0 & 1
\end{array}\right] \\
& \xrightarrow[\substack{R_{2} \rightarrow R_{2}-(-4) R_{1} \\
R_{3} \rightarrow R_{3}-6 R_{1}}]{ }\left[\begin{array}{cccc|cccc}
1 & 0 & 3 & -2 & 1 & 0 & 0 & 0 \\
0 & 1 & 4 & 0 & 4 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & -6 & 0 & 1 & 0 \\
0 & -2 & -8 & 1 & 0 & 0 & 0 & 1
\end{array}\right] \\
& \xrightarrow{R_{4} \rightarrow R_{4}-(-2) R_{2}}\left[\begin{array}{cccc|cccc}
1 & 0 & 3 & -2 & 1 & 0 & 0 & 0 \\
0 & 1 & 4 & 0 & 4 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & -6 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 8 & 2 & 0 & 1
\end{array}\right] \\
& \xrightarrow{R_{1} \rightarrow R_{1}-3 R_{3}} R_{2} \rightarrow R_{2}-4 R_{3} \\
&
\end{aligned}\left[\begin{array}{cccc|cccc}
1 & 0 & 0 & -2 & 19 & 0 & -3 & 0 \\
0 & 1 & 0 & 0 & 28 & 1 & -4 & 0 \\
0 & 0 & 1 & 0 & -6 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 8 & 2 & 0 & 1
\end{array}\right],
$$

so then

$$
A^{-1}=\left[\begin{array}{cccc}
35 & 4 & -3 & 2 \\
28 & 1 & -4 & 0 \\
-6 & 0 & 1 & 0 \\
8 & 2 & 0 & 1
\end{array}\right]
$$

2. (a) Writing the system in the form $A \mathbf{x}=\mathbf{b}$ we have

$$
A=\left[\begin{array}{ccc}
1 & 0 & -3 \\
5 & \frac{1}{3} & -15 \\
-1 & 1 & 4
\end{array}\right] \quad \mathbf{x}=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{c}
1 \\
3 \\
-6
\end{array}\right]
$$

First we compute A^{-1} :

$$
\begin{aligned}
& {\left[\begin{array}{ccc|ccc}
1 & 0 & -3 & 1 & 0 & 0 \\
5 & \frac{1}{3} & -15 & 0 & 1 & 0 \\
-1 & 1 & 4 & 0 & 0 & 1
\end{array}\right] } \xrightarrow{\substack{R_{2} \rightarrow R_{2}-5 R_{1} \\
R_{3} \rightarrow R_{3} \rightarrow(-1) R_{1}}}\left[\begin{array}{ccc|ccc}
1 & 0 & -3 & 1 & 0 & 0 \\
0 & \frac{1}{3} & 0 & -5 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 1
\end{array}\right] \\
& \xrightarrow{R_{2} \rightarrow 3 R_{2}}\left[\begin{array}{ccc|ccc}
1 & 0 & -3 & 1 & 0 & 0 \\
0 & 1 & 0 & -15 & 3 & 0 \\
0 & 1 & 1 & 1 & 0 & 1
\end{array}\right] \xrightarrow{\xrightarrow{R_{3} \rightarrow R_{3}-R_{2}}\left[\begin{array}{ccc|ccc}
1 & 0 & -3 & 1 & 0 & 0 \\
0 & 1 & 0 & -15 & 3 & 0 \\
0 & 0 & 1 & 16 & -3 & 1
\end{array}\right]} \xrightarrow{\substack{R_{1} \rightarrow R_{1}-(-3) R_{3}}}\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & 49 & -9 & 3 \\
0 & 1 & 0 & -15 & 3 & 0 \\
0 & 0 & 1 & 16 & -3 & 1
\end{array}\right]
\end{aligned}
$$

so

$$
A^{-1}=\left[\begin{array}{ccc}
49 & -9 & 3 \\
-15 & 3 & 0 \\
16 & -3 & 1
\end{array}\right]
$$

and hence

$$
\mathbf{x}=A^{-1} \mathbf{b}=\left[\begin{array}{ccc}
49 & -9 & 3 \\
-15 & 3 & 0 \\
16 & -3 & 1
\end{array}\right]\left[\begin{array}{c}
1 \\
3 \\
-6
\end{array}\right]=\left[\begin{array}{c}
4 \\
-6 \\
1
\end{array}\right]
$$

(b) The matrix A in this case would be 3×4 and hence not square. Therefore A would not be invertible.
3. First we try to row-reduce A to I :

$$
\begin{aligned}
& {\left[\begin{array}{ll}
4 & -6 \\
1 & -1
\end{array}\right] \xrightarrow{R_{1} \leftrightarrow R_{2}}\left[\begin{array}{ll}
1 & -1 \\
4 & -6
\end{array}\right]} \\
& \xrightarrow{R_{2} \rightarrow R_{2}-4 R_{1}}\left[\begin{array}{ll}
1 & -1 \\
0 & -2
\end{array}\right] \xrightarrow{R_{2} \rightarrow-\frac{1}{2} R_{2}}\left[\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right] \\
& \xrightarrow{R_{1} \rightarrow R_{1}-(-1) R_{2}}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] .
\end{aligned}
$$

Then the elementary matrices involved are

$$
E_{1}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \quad E_{2}=\left[\begin{array}{cc}
1 & 0 \\
-4 & 1
\end{array}\right] \quad E_{3}=\left[\begin{array}{cc}
1 & 0 \\
0 & -\frac{1}{2}
\end{array}\right] \quad E_{4}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] .
$$

The associated inverses are

$$
E_{1}^{-1}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \quad E_{2}^{-1}=\left[\begin{array}{ll}
1 & 0 \\
4 & 1
\end{array}\right] \quad E_{3}^{-1}=\left[\begin{array}{cc}
1 & 0 \\
0 & -2
\end{array}\right] \quad E_{4}^{-1}=\left[\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right]
$$

and so

$$
E_{4} E_{3} E_{2} E_{1} A=I \quad \Longrightarrow \quad A=E_{1}^{-1} E_{2}^{-1} E_{3}^{-1} E_{4}^{-1}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
4 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & -2
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right]
$$

4. We first row-reduce the matrix of coefficients A to row-echelon form using only the third elementary row operation:

$$
\left.\begin{array}{c}
A=\left[\begin{array}{ccc}
5 & 2 & -1 \\
1 & 0 & 4 \\
-2 & 0 & 1
\end{array}\right] \stackrel{\substack{R_{2} \rightarrow R_{2}-\frac{1}{5} R_{1} \\
R_{3} \rightarrow R_{3}-\left(-\frac{2}{5}\right) R_{1}}}{\longrightarrow}\left[\begin{array}{ccc}
5 & 2 & -1 \\
0 & -\frac{2}{5} & \frac{21}{5} \\
0 & \frac{4}{5} & \frac{3}{5}
\end{array}\right] \\
\\
R_{3} \rightarrow R_{3}-(-2) R_{2}
\end{array} \begin{array}{ccc}
5 & 2 & -1 \\
0 & -\frac{2}{5} & \frac{21}{5} \\
0 & 0 & 9
\end{array}\right]=U .
$$

Now we compose the matrix L. We subtracted $\frac{1}{5}$ times the 1st row from the 2 nd row, so the $(2,1)$ element is $\frac{1}{5}$. We subtracted $-\frac{2}{5}$ times the 1 st row from the 3rd row, so the $(3,1)$ element is $-\frac{2}{5}$. We subtracted -2 times the 2 nd row from the 3 rd row, so the $(3,2)$ element is -2 . Hence

$$
L=\left[\begin{array}{ccc}
1 & 0 & 0 \\
\frac{1}{5} & 1 & 0 \\
-\frac{2}{5} & -2 & 1
\end{array}\right]
$$

So now we want to solve $A \mathbf{x}=\mathbf{b}$ where $\mathbf{b}=\left[\begin{array}{c}12 \\ -13 \\ -1\end{array}\right]$. This is equivalent to $L U \mathbf{x}=\mathbf{b}$, and so first we solve $L \mathbf{y}=\mathbf{b}$ by forward-substitution. We have

$$
\begin{aligned}
& y_{1}=12 \\
& y_{2}=-13-\frac{1}{5} y_{1}=-\frac{77}{5} \\
& y_{3}=-1+2 y_{2}+\frac{2}{5} y_{1}=-1-\frac{154}{5}+\frac{24}{5}=-27 .
\end{aligned}
$$

Now we use back-substitution to solve $U \mathbf{x}=\mathbf{y}$ and so

$$
\begin{aligned}
& x_{3}=\frac{1}{9}(-27)=-3 \\
& x_{2}=-\frac{5}{2}\left(-\frac{77}{5}-\frac{21}{5} x_{3}\right)=7 \\
& x_{1}=\frac{1}{5}\left(12+x_{3}-2 x_{2}\right)=-1
\end{aligned}
$$

